
Engineering a Distributed Full-Text Index∗

Johannes Fischer† Florian Kurpicz† Peter Sanders‡

Abstract

We present a distributed full-text index for big data appli-

cations in a distributed environment. Our index can an-

swer different types of pattern matching queries (existen-

tial, counting and enumeration). We perform experiments

on inputs up to 100 GiB using up to 512 processors, and

compare our index with the distributed suffix array by Ar-

royuelo et al. [Parall. Comput. 40(9): 471–495, 2014]. The

result is that our index answers counting queries up to 5.5

times faster than the distributed suffix array, while using

about the same space. We also provide a succinct variant of

our index that uses only one third of the memory compared

with our non-succinct variant, at the expense of only 20%

slower query times.

1 Introduction

Index data structures are one of the most powerful tools
for coping with large data sets. Among the index data
structures for texts are suffix arrays, suffix trees and
related structures that allow full-text search of patterns
in time independent of the size of the text corpus.
Consequently, there are thousands of papers on such
suffix data structures. However, when you look at truly
large data sets that do not fit on a single machine, there
is very little work yet. We found that very surprising
since the biggest inputs are those where the index has
the biggest impact. Refer to § 1.2 for a more detailed
discussion of related work. You can easily adopt the
approach from commercial search engines (which use
inverted index data structures) to distribute your corpus
over the machines and then use a local index on each
machine. However, then the amount of work and energy
you invest in a query grows proportional to the number
of machines and thus, linearly with the corpus size – you
have (asymptotically) thrown away the huge advantage
of a powerful index data structure.

Our contribution is the development of a truly

∗This work was supported by the German Research Founda-
tion (DFG), priority programme “Algorithms for Big Data” (SPP

1736).
†Technische Universität Dortmund, Department of Computer

Science, johannes.fischer@cs.tu-dortmund.de, florian.kurpicz@tu-
dortmund.de
‡Karlsruhe Institute of Technology, Institute for Theoretical

Informatics, sanders@kit.edu

distributed full-text index data structure that supports
typical queries by exchanging only a constant number
of messages whose length is proportional to the length
of the search pattern.

1.1 Overview. Our construction algorithm starts
from a distributed input text T and a distributed suf-
fix array (SA) together with information on the longest
common prefix of subsequent entries in the SA, the so
called LCP-array. In § 2 we formally introduce the SA,
LCP-array, and other prerequisites. By scanning the SA
and LCP-array, we then construct a two-level trie data
structure. Using succinct data structures we can reduce
the size of the trie to 15 bits per character of the text.
In our scenario, a processing elements (PE) denotes a
processor on a compute node in the cluster. A small
top-level trie GT (see § 3.1 for more details) is sufficient
to decide which PEs are involved in answering a query.
GT is replicated over all PEs so that queries can arrive
anywhere and get forwarded to those PEs that hold the
relevant part of the SA. The search in the local part of
a SA is facilitated by a succinctly represented Patricia
trie on that part. After this local search, a single remote
access to the text suffices to locate the pattern in the
SA. Refer to § 3.1 for a more detailed explanation of
our data structure.

1.2 Related Work. Multi-level full-text indices
have been considered for external memory. The String
B-Tree [6] utilizes Patricia tries at each level to reduce
the I/O volume. There exists also theoretical work by
Ferragina and Luccio [7] that discusses a distributed Pa-
tricia trie. Their approach is only good when answering
long queries, for example, existential queries “does the
pattern occur in the text?” of length m ≥ c, where c
is the number of PEs. Those queries can be answered
optimally with respect to computation and communica-
tion. For real world applications this does not provide
a satisfactory solution, as the average length of natural
queries is shorter (18 AOL [27] and 21 TREC [26] on
average) than the number of PEs we want to utilize.

A complementary (theoretical) approach is de-
scribed by Mäkinen et al. [21] and is good for short
patterns. Using backwards search, a query can be an-
swered using m communication steps. The problem is

mailto:johannes.fischer@cs.tu-dortmund.de
mailto:florian.kurpicz@tu-dortmund.de
mailto:florian.kurpicz@tu-dortmund.de
mailto:sanders@kit.edu

that at most σ PEs can be used and, in the worst case,
some PEs might need space Ω(n).

Arroyuelo et al. [1] consider a large variety of
distributed suffix array data structures with various
tradeoffs between replication, number of remote data
accesses, and load balance. However, they always use
explicit binary search in the suffix array, leading to
logarithmically higher costs than our approach. Our
index can be viewed as an improvement of the global
approach presented in [1], where we add two levels of
tries that allow us to answer each query exchanging only
a constant number of messages. We show that our index
scales better especially for larger text sizes and a larger
number of PEs.

Russo et al. [28] (theoretically) describe distributed
compressed indices. Their approach partitions the text
between the PEs and works with local indices. The
consequence is that queries have to be processed on
every PE, contrary to our goal to have total work
independent of c.

It is known that the suffix array can be computed
efficiently in parallel [17, 18]. Flick et al. [11] give the
only distributed algorithm for computing both the SA
and LCP-array; their approach is within a factor of
O(log n) from the optimal. We use the SA and LCP-
array as the starting point for our index construction
and we do not study their construction in this paper.
Note that none of these papers [11, 17, 18] discuss
how to actually use the resulting data structure for a
distributed query.

There are several results that assume that the input
text is replicated over all PEs (e.g. [5]). This makes
index construction and search much easier but severely
limits scalability, so we do not consider them further.

2 Preliminaries

2.1 Suffix Arrays. Let T= T[1] T[2] . . .T[n] be a
text of length n over an alphabet Σ of size |Σ| = σ.
T[i..j] denotes the substring T[i] . . .T[j] for all 1 ≤
i ≤ j ≤ n. Also, Pi = T[1..i] is i-th prefix of T and
Si = T[i..n] is the i-th suffix of T for all 1 ≤ i ≤ n.
The longest common prefix (lcp) denotes the maximum
size of a common prefix of two suffixes of the text, i.e.,
lcp (i, j) = max{k ≥ 0 : T[i..i+ k− 1] = T[j..j + k− 1]}
for all 1 ≤ i, j ≤ n.

The suffix array [22] SA of a text T with |T| = n
is a permutation of [1, n] such that it enumerates the
starting positions of the suffixes of T in lexicographical
order. Hence, SSA[i] <lex SSA[j] for all 1 ≤ i < j ≤ n.
The longest common prefix array (LCP-array) enhances
the SA and contains the size of the longest common
prefix of two lexicographically consecutive suffixes, i.e.,
LCP[1] = 0 and LCP[i] = lcp (SA[i− 1],SA[i]) for all

2 ≤ i ≤ n.
The SA and LCP-array are the foundation of the

indices considered in this paper, i.e., the index we
present and the index we compare our results with. Not
only can they be simulated using these two arrays, but
they can also be constructed using only the SA, LCP-
array and T. As already mentioned in the introduction,
there exists a distributed algorithm for constructing the
SA and LCP-array [11], which is a distributed variant
of Larsson and Sadakane’s algorithm [19]. Using c PEs
it can compute the SA in O(tsort (n, c) lg n) time, where
tsort (n, c) denotes the time required to sort n elements
that are uniformly distributed over c PEs. The LCP-
array construction requires O

((
n
c + c

)
lg n
)

additional
time. Another distributed SA construction algorithm
is the pDC3 [18], which is a distributed variant of
the DC3 algorithm [17], can compute the SA in time

O
(

n lgn
c + lg2 c

)
, i.e., a log-factor better than [11]. For

our experiments we use the implementation of the latter,
as it is the only available distributed SA and LCP-array
construction algorithm.

2.2 Tries. Given a labeled tree G = 〈V,E〉 with root
r ∈ V , we denote the label of a node or an edge by
label(·) and the concatenation of all edge labels on the
path from the root to a node v by pathlabel(v). The out-
degree of a node v is denoted by δ+(v). The leaf rank of
a leaf ` ∈ V is the number of leaves visited before ` in
a preorder traversal of the tree.

Let R = {R1, R2, . . . , Rk} be a set of strings over
the alphabet Σ such that all strings are distinct and no
string is the prefix of another string in R. The trie of
R is an ordered tree with root r, where the edge labels
are characters and the leaves represent string numbers
from [1, k] such that:

1. for each node v ∈ V , the labels of the outgoing
edges label((v, ·)) ∈ Σ are distinct,

2. for each string Ri ∈ R, there is a leaf ` ∈ V with
Ri = pathlabel(`) and label(`) = i and

3. for each leaf ` ∈ V there is a string Ri ∈ R such
that Ri = pathlabel(`) and label(`) = i.

The compressed trie is a trie where each path
e1, e2, . . . , e` with ` > 1 consisting only of nodes with
out-degree 1 is replaced by a single edge e such that
label(e) = label(e1) label(e2) . . . label(e`). Still, all out-
going edges of a node v start with a different character.
The string depth of a node v is sd(v) = |pathlabel(v)|,
i.e., the length of the longest common prefix of all strings
represented leaves below v. To find all occurrences of a
pattern P in a compressed trie, we start at the root r and

ab cd ef g h ij k

BP (()(()(()()))()(()()))

a bc de fghi jk

DFUDS ((((())(())(())))(()))

ab ch id ejkfg

LOUDS 111100110011001100000

(a)

a

i

kj

hc

e

gf

d

b

(b)

Figure 1: (a) Succinct representations of the tree shown in (b).

follow the edge e such that label(e) = P[1.. |label(e)|]. At
each node v, the length of the pattern matched up to
this point equals sd(v). We then follow the edge e with
label(e) = P[sd(v) + 1.. |label(e)| + sd(v)]. This process
is repeated until we have matched the whole pattern at
the edge (·, v). Then, all leaves that are successors of v
correspond to strings in R that are prefixed by P. If at
any point, there is no edge to follow, the pattern P does
not occur in the trie.

The Patricia trie (or blind trie) [23] of a text T is
a compressed trie for all suffixes of T, where each node
v just stores the first character and the string depth
sd(v). Due to this limitation, finding all occurrences of
a pattern requires two steps – a blind search followed
by a comparison to a substring of T (which has been
determined by the blind search):

For the blind search, we start at the root and
follow the edge matching the pattern at the position
corresponding to the string depth, i.e., at a node v we
follow the edge e with label label(e) = P[sd(v)]. We
repeat this until we have reached a node v such that
sd(v) ≥ |P| or there is no feasible edge to follow. In the
first case, we retrieve a prefix of length |P| of a suffix
corresponding to any leaf w that is a successor of v and
compare that prefix with our pattern P. In the second
case (there is no edge to follow) P does not occur in T.

Next, we compare P and T[i..i+ |P| − 1] where i is
the label of the leaf w (that has been identified during
the blind search). If the strings are equal, then all leaves
that are below v correspond to an occurrence of P in T.
Otherwise, P does not occur in T.

The Patricia trie can be constructed from the SA,
LCP-array and T in linear time, i.e., scanning the SA
and LCP-array once and considering each entry at most
twice. T is required for the edge labels and each position
is accessed at most once. In § 3.1 we give a detailed
description of the construction algorithm and in § 4.1
we compare the construction time for the tries needed

by our index with the time required for the construction
of the SA and LCP-array.

2.3 Succinct Data Structures. We can represent a
tree containing ` nodes using a bit vector B ∈ {0, 1}2`.
The bits represent parentheses; a 1 represents an open
parenthesis “(” and a 0 represents a closing parenthesis
“)”. To navigate in the tree, we require additional
operations on the bit vector: rank0(i) asks for the
number of 0’s in B up to position i − 1, select0(i)
returns the position of the i-th 0 in B, and find close(i)
gives the position of the matching closing parenthesis
for an open parenthesis at position i. The operations
rank1(·) and select1(·) work analogously for 1’s in the
bit vector. All these operations can be answered in
constant time [4, 15]. The level ordered unary degree
sequence (LOUDS) [15] represents a tree level-wise, i.e.,
starting at the root, we visit all nodes v of a level from
left to right and add δ+(v) 1’s followed by a 0 to the
bit vector. The position of the i-th child of the node at
position x is identified by select0(rank1(x) + i− 1) + 1
in constant time. The depth first unary degree sequence
(DFUDS) [2] is obtained by traversing the tree in
preorder and (like in LOUDS) append δ+(v) 1’s followed
by a 0 whenever we visit a node v for the first time.
To make the sequence balanced, we prepend a 1. The
position of the i-th child of the node at position x is
identified by find close(select0(rank1(x) + 1) + 1) + 1 in
constant time. Last, the balanced parenthesis (BP)
representation [24] is also constructed by traversing
the tree in preorder: We add a 1 to the bit vector
whenever we visit a node for the first time and we
add a 0 to the bit vector whenever we visit a node for
the last time. In theory, BP also allows an access of
the i-th child in constant time [29]. However, in the
implementation used by us (see § 4 for more details),
BP does not support a direct access to the i-th child.
Instead, one has to access the first child of the node

at position x (position x + 1) and then go to the next
child (find close(x) + 1) until the i-th child is reached
in O(i) time. In our implementation, the first two
representations allow an access of the i-th child in
in constant time, whereas it takes O(i) time in BP.
See Figure 1 for an example of these succinct tree
representations.

2.4 Model of Computation. In the bulk-
synchronous parallel (BSP) model [31], each com-
putation is a sequence of supersteps. Each superstep
is split into three parts. First, the PEs can perform
any number of operations based on local data. This
is followed by a communication phase, where the PEs
can send data to other PEs. After the communication,
all PEs are synchronized, i.e., all PEs wait until the
last PE has finished all operations on local data and
communication. There is no synchronization between
the first and second part, PEs can start communicating
as soon as they have finished working on the local data
(the results of the communication are not available
during the superstep). Then at the beginning of the
next superstep, each PE can use the data retrieved
during the last superstep. The total running time of
a BSP program is the cost of all its supersteps, where
the cost of one superstep is w + hG+ L. Here,

• w is the maximum time used for computation by
each PE (excluding communication),

• h is the maximum of machine words communicated
by each PE, withG being the running time required
for the communication of one machine word, and

• L is the cost of the barrier synchronization.

BSP has been considered as the model for other dis-
tributed indices [1, 7]. Also, we will see that the BSP
model suits our setting well, as we have well defined
phases where communication is required during con-
struction and query processing – see § 3. Whenever we
retrieve data we refer to direct remote memory access
(DRMA) that is supported by the BSP model [30].

3 Distributed Patricia Trie

Let T= T[1] T[2] . . .T[n] be a text of length n. The PEs
are numbered from 1 to c. We assume that n is divisible
by c. Then we distribute the SA and LCP-array in a
consecutive fashion, such that the i-th PE holds SAi =
SA[1 + (i− 1) n

c ..i
n
c] and LCPi = LCP[1 + (i− 1) n

c ..i
n
c].

In addition, each PE holds a part of the text as described
in the next section.

Our proposed data structure, the distributed Patri-
cia trie (DPT), is a two level index consisting of an
index GT for query distribution (first level) and several

indices PTi that can find all occurrences of a pattern
P that starts at text positions held by the local SAi on
PE i (second level). In this case we say that the PE i is
responsible for P. The index GT is replicated at every
PE. This allows queries to arrive at arbitrary PEs and
then to be sent to the responsible PEs in the next step.
There, the query is processed utilizing PTi. This index
is unique for each PE – see also Figure 2.

3.1 Construction. In this section we show how to
construct the DPT in linear time. We start with the
construction of the local PTs as we use the informa-
tion about their smallest and greatest element for the
construction of GT.

Local Tries. The construction is the same at each
PE. Our construction algorithm is the extension of an
algorithm to compute the suffix tree, i.e., a compressed
trie of all suffixes of a text T. We modified the suffix
insertion algorithm presented in [20, p. 143] such that
the Patricia trie can be constructed by scanning the SA
and LCP-array from left to right. The pathlabel of the
rightmost path in a (Patricia) trie is the lexicograph-
ically largest pathlabel in the trie. Since all suffixes
in SA are in lexicographical order, each suffix that is
added to the Patricia trie is lexicographical greater that
all previously inserted suffixes and will form the new
rightmost path. Therefore, at each point of time dur-
ing the construction, only nodes on the rightmost path
can be changed. All other nodes are considered as final.
The inner nodes on the rightmost path, i.e., the nodes
that can still be changed, are kept on a stack. Since we
compute a Patricia trie, each node v knows its string
depth sd(v).

Initially, we have a stack containing a node with
string depth 0 and no children. We start by adding the
first inner node v, with sd(v) = LCP[2], two children
(the left child represents SA[1] and the right child
represents SA[2]) with edge labels T[SA[1]+LCP[2]] and
T[SA[2] + LCP[2]], resp. If sd(v) = 0, the node replaces
the initial one that has been on the stack. Otherwise,
v will be a child of the initially created node. We now
continue to scan the SA and LCP-array from left to right.
Whenever we read a new position i in the LCP-array, we
remove nodes from the stack until the node v on top of
the stack has sd(v) ≤ LCP[i]. If sd(v) < LCP[i], we
create a new inner node w with sd(w) = LCP[i], i.e., we
branch below node v. The left child of w (edge label
T[SA[i− 1] + LCP[i]]) is the former rightmost child of v,
and the right child of w is a new leaf referring to SA[i]
and has edge label T[SA[i] + LCP[i]]. Next, w becomes
the new rightmost child of v and is put on the stack. If
sd(v) = LCP[i], v just gets a new rightmost child (edge
label T[SA[i] + LCP[i]]) referring to SA[i], i.e., v gets a

PE 1 PE 2 PE 3 PE 4

SA1 SA2 SA3 SA4

GT GT GT GT

PT1 PT2 PT3 PT4

Q

Figure 2: The first level of the DPT is a trie (GT) over the smallest and largest suffix stored by the local suffix
array at each PE. It is the same at each PE. The lower level at PE i is the local Patricia trie PTi over SAi. A
query Q is answered in four supersteps. First, the PEs that are responsible for the query are determined (using
the trie GT at the first level). Then the query is sent to those PEs. In the second superstep, a blind search in the
Patricia trie PTi (second level of PE i) is executed. The substring corresponding to the result of the blind search
is retrieved and in the third superstep the query is answered using that substring.

new leaf. Following these operations, we can compute
each local PT in O

(
n
c

)
time.

With respect to practical application, we also want
to construct succinct representations of the tries. It
is possible to compute a succinct representation using
its pointer based representation. Using the approach
described above, we can also compute a succinct trie
representation directly, i.e., reducing the required mem-
ory peak for the construction. We compute the DFUDS
representation of a trie by storing all final nodes and
their subtrees in DFUDS representation. Whenever we
remove a node from the stack, we add it and its sub-
tree at the end of the already computed DFUDS rep-
resentation of the previously removed final nodes. This
is possible because we construct the trie in the same
order as a depth first search traversal visits all nodes
(which is the order in which the nodes are represented
in DFUDS).

Up to now, we have simply named the characters
that correspond to the edge labels. Since all local PTs
are on different PEs, we cannot assure that the text po-
sition required for an edge label is locally available. We
have to retrieve all edge labels during one communica-
tion phase. The number of characters stored at each PE
is Θ(n

c). During the construction of the local Patricia
trie PTi, we scan the arrays SAi and LCPi to determine
the first mismatching text positions of two lexicograph-
ically consecutive suffixes. These characters will then
be used for the edge labels later on. If we create a new
leaf, we only require one edge label.

For a simpler and more realistic analysis of the
costs for constructing our local indexes, we assume that
all mismatching characters are stored at the same PE

where the corresponding suffix starts, i.e., we assume
that T[SA[i].. SA[i] + max(LCP[i], LCP[i + 1])] is stored
on one PE for all 1 ≤ i ≤ n. This is usually the
case if the text T is composed of a number of smaller
documents such that all documents reside on a single
PE, but all PEs still have Θ

(
n
c

)
characters. (If this is

not the case, one could still replicate parts of the text on
each PE such that the PEs hold overlapping parts of the
text.) Under this assumption, each PE needs to send
O
(
n
c

)
characters as edge labels. Further, each PE also

receives at most O
(
n
c

)
characters, as the local Patricia

trie has less than 2n
c edges. Finally, we note that the

construction takes one superstep (construct the tree and
store the text positions, then retrieve the characters at
those positions). This leads to the following Lemma
(where the claim about space follows easily because the
local Patricia tries store the edge labels, the SA-values
at the leaves, and the skip values at the edges).

Lemma 3.1. Given that all mismatching characters are
stored at the same PE where the corresponding suffix
starts, the SA, and the LCP-array, constructing the
Patricia tries costs O

(
n
c + n

cG+ L
)
. Each PTi requires

|tree structure|+O
(
n
c (lg n+ lg σ)

)
bits of space.

Global Trie. Next, we consider the construction of
the global trie GT, which allows us to distribute queries
without accessing the text. GT is the same at every
PE, which allows arbitrary PEs to initially process any
query. To identify all PEs that are responsible for a
pattern, we require the smallest and largest suffix that is
represented by each PE and their lcp-values. Using this
set of suffixes S = {SSA1[1], SSA1[

n
c], . . . , SSAc[1], SSAc[

n
c]}

to construct GT, we can use the following observation

to identify all PEs that are responsible for a pattern.

Observation 3.2. PE i is responsible for a pattern P
if and only if T[SAi[1]..SAi[1] + |P| − 1] ≤lex P and
P ≤lex T[SAi[

n
c]..SAi[

n
c] + |P| − 1].

Obviously, there can be pattern for which multiple PEs
are responsible. Depending on the type of query, we
need to use the second level index of at most two PEs
to answer a query. Communication with more PEs may
be necessary – see § 3.2 for more details.

The global trie can be constructed similar to the lo-
cal Patricia trie construction described above. The suf-
fixes required for the construction are known (all suffixes
in S). We still require the size of the longest common
prefixes of those suffixes. For two lexicographically con-
secutive suffixes the size is in the LCP-array. The size
of the longest common prefix of the other suffixes is the
string depth of the root of the corresponding local PT.
We can propagate all these values during one commu-
nication phase, where each PE sends the two text po-
sitions and lcp-values to all other nodes, sending O(c)
messages of constant size. At the end of the phase each
PE has a temporary SA and a temporary LCP-array
each of size 2c. Using these arrays we use the algorithm
described above, only handling edge labels differently.

The task of the global trie GT is to distinguish all
elements in S without accessing T. Therefore, the edge
labels may consist of more than one character. The first
character of an edge (v, w) is the same character we
would store if we constructed a Patricia trie. Let the
text position of this character be i. Instead of storing
only this character and the string depth, we now need
to store the substring T[i..i + sd(w)] as the edge label
of (v, w). Hence, it is not necessary to store the string
depth at the nodes. In addition, we construct the trie
with respect to a maximum pattern size |P|max. We can
usually assume that |P|max is constant (chosen during
construction) such that the size |P| of each pattern P is
at most |P|max. Thus, the total size of all edge labels
is bounded by 2c |P|max. During the construction, we
store references to the edge labels, i.e., the text position
and length. Therefore, at each PE it is known which
substrings need to be communicated (as edge labels).
The edge labels are distributed among the PEs in two
supersteps. First, each PE sends an equal amount of
different labels to each PE. The cost for this superstep
(including the construction of the tree structure) is
O(c+ c |P|maxG+ L). In the next superstep, each PE
distributes the received labels to each other PE, costing
O(c |P|maxG+ L).

To prevent that a requested substring spans over
more than one PE we pad the locally stored text with
the next |P|max characters. Since we build the trie for

2c substrings, this requires O(c) time, which leads to
the following Lemma.

Lemma 3.3. Given the SA and LCP-array, constructing
the global trie costs O(c+ c |P|maxG+ L). The trie
requires |tree structure|+O(c |P|max lg σ) bits of space.

Reducing the Memory Overhead. Now we
show how we can reduce the memory overhead by in-
creasing the number of supersteps required during con-
struction. The whole index is kept in main memory,
therefore, we want the overhead during the construction
to be as small as possible. First, note that we can stream
the SA and LCP-array, since we just need to scan them
once for the construction. Second, we look at the size
of the indices, as usually a text position requires more
space than a character. Since we need characters but ob-
tain text positions, we need to store them until the next
communication phase. Usually lg n � lg σ (i.e., factor
of five to ten in practice), thus the text positions con-
sume more memory than the labels will later on. If we
only compute s required text positions during a super-
step and then retrieve them, we need O

(
n
sc

)
supersteps.

Thus, we can decrease the memory overhead by increas-
ing the number of supersteps that are required during
the construction. This yields the following space-time
trade-off (regarding the maximum amount of memory
required during construction).

Corollary 3.1. Given the SA and LCP-array, the cost
of constructing the Patricia trie is O

(
n
c + n

cG+ n
scL
)

if
we only allow s lg n bits additional space.

3.2 Querying. The global trie GT is constructed for
the set S = {SSA1[1], SSA1[

n
c], . . . , SSAc[1], SSAc[

n
c]} and a

maximum pattern length of |P|max. For any i ∈ [1, c] the
2i-th leaf corresponds to the lexicographically smallest
suffix and the 2i+ 1-th leaf corresponds to the greatest
suffix represented by PE i. Querying GT is different
from querying a trie as we do not want to find all
occurrences of a pattern P, but want to find all PEs
that represent P. We still follow the edges according to
their label and the corresponding position in P until we
have matched P at a node u or have a mismatch with
the label of an edge (v, w).

In the first case and if v is an internal node, we need
to identify the leftmost and rightmost leaves below v.
Let k and ` be the leaf ranks of those leaves, resp. Then
all PEs j with j ∈ [bk2 c, b

`
2c] contain positions where

the pattern occurs, as the PEs cannot be distinguished
by P. If (in the first case) v is a leaf with leaf rank
k, then PE bk2 c can be responsible for P. In this case
we cannot be sure, as pathlabel(v) may be a prefix of
P. Therefore, we send P to PE bk2 c and use the local
Patricia trie PTb k

2 c
to determine whether P occurs.

In the second case (there was a mismatch), P can
still occur. Let α and β be the mismatching characters
of the label and the pattern, resp. If α >lex β we
look at the leftmost leaf below w. If the leaf rank k
is even, P does not occur in any PE, as it is smaller
than the lexicographically smallest suffix represented by
PE bk2 c and greater than the lexicographically greatest

suffix represented by PE bk2 c − 1 because otherwise
another edge would be followed in the beginning. If
the rank is odd, P may occur in PEs bk2 c. In the
other case (α <lex β), we need to get the rightmost
leaf below w and check the leaf rank. There may be
an occurrence if the leaf rank is even and there cannot
be an occurrence if the leaf rank is odd (with the same
type of argumentation given before). All PEs that are
responsible for a pattern P form a consecutive interval
that we denote by GT(P) = [`, r].

Lemma 3.4. Given GT and a pattern P. Let GT(P) =
[`, r], if ` 6= r then P occurs at least once in PEs ` and
r and n

c times in PEs j for all j ∈ (`, r).

Now we take a look at how to answer pattern
matching queries in the local Patricia tries. First, we
look at the processing of a single query. Later, we show
how the index can be used to answer a batch of queries.

Pattern Matching Queries. There are three
types of pattern matching queries that the DPT sup-
ports:

Existential: Given a pattern P, we want to know
whether the pattern P occurs in the text T.

Counting: Given a pattern P, we want to know how
often the pattern P occurs in the text T.

Enumeration: Given a pattern P, we want to know all
text positions in T where P occurs.

First, we look at an existential query P that arrives at
PE i. We can answer the query in three supersteps (see
also Figure 2):

1. At PE i, we identify all PEs that are responsible
for P, i.e., all PEs j with j ∈ GT(P). If ` 6= r we
know that P occurs in T (see Lemma 3.4), else we
send P to PE `.

2. Next, we perform a blind search in PT`. If the
blind search fails, we know that P does not occur
in T. Otherwise, the blind search returns a text
position q. During the communication phase we
retrieve T[q..q + |P| − 1].

3. Using T[q..q + |P| − 1] we can verify the existence
of P in T in the third superstep. When a query can

be answered at a PE, we do not send it somewhere
else, as the target depends on the application the
index is used for.

The cost of an existential query is the following. Dur-
ing the first superstep we identify all PEs that can
answer the query and send it to one PE costing
O(ttrie(P) + |P|G+ L). We let ttrie(P) denote the time
required to search for P in a trie. Depending on the
implementation this requires O(|P| lg σ) time (binary
search) or O(|P|+ lg lg σ) time [9]. In the second su-
perstep we perform a blind search and retrieve a sub-
string of length |P|. This costs O(ttrie(P) + |P|G+ L).
During the last superstep we just compare two strings
of length |P| in O(|P|) time.

Counting all occurrences of a pattern can be seen
as an extension of the existential query and can be
answered similarly (requiring four supersteps). Let P
be a counting query arriving at PE i.

1. First, we identify all PEs that are responsible for P,
i.e., all PEs j with j ∈ GT(P). Let all PEs j with
j ∈ [`, r] be responsible for P. If ` 6= r we know that
P occurs in all those PEs (see Lemma 3.4). During
the communication phase we send two queries Q`

and Qr to PE ` and r, resp. The former asks for the
lexicographically smallest occurrence of P in PT`

and the latter asks for the lexicographically largest
occurrence of P in PTr.

2. In the next step, we perform one blind search in
PT` and one blind search in PTr. If ` 6= r we
know that the blind searches will return two text
positions q` and qr that are the lexicographically
smallest and largest occurrences of P in T. If
one of the blind searches fails we know that the
PE is not responsible for P and we can send that
there are no occurrences at the PE. During the
communication phase, we retrieve T[q`..q` + |P|−1]
and T[qr..qr + |P| − 1].

3. Using T[q`..q` + |P| − 1] and T[qr..qr + |P| − 1] we
can verify the existence of P in T (only necessary
if ` 6= r) and also find the number of occurrences
at PEs ` and r using the leaf ranks. We send the
number to PE i.

4. We know the number of occurrences occ` and occr
of P in PEs ` and r, resp. We also know that
P has to occur n

c times at each PE j for j ∈
(`, r). Thus the total number of occurrences of P is
occ` + occr + max (0, r − `− 1) n

c .

The first superstep costs O(ttrie(P) + |P|G+ L) as we
need to identify the PEs that are responsible for the pat-
tern and send it to two PEs. In the second superstep we

perform a blind search at two PEs and retrieve two sub-
strings of length |P|. This costs O(ttrie(P) + |P|G+ L).
The third superstep consist of comparing the retrieved
substrings with the pattern and send the number of oc-
currences of the pattern to the PE where the pattern
arrived initially, i.e., PE i. This costs O(|P|+G+ L).
During the last superstep we need to compute the total
number of occurrences at PE i which costs O(1 + L).

Last, we consider enumeration queries. Let P be a
enumeration query arriving at PE i. During the first two
supersteps answering an enumeration query does not
differ from answering a counting query. The remaining
steps are changed as follows.

3. Using T[q`..q` + |P| − 1] and T[qr..qr + |P| − 1] we
can verify the existence of P in T (only necessary if
` 6= r) and also find all positions where the pattern
occurs. We send all these positions to PE i.

4. We have received all occurrences of P from the PEs
` and r. Next we need to retrieve all occurrences,
i.e., the local SA from all PEs j for j ∈ (`, r).

The first two supersteps are the same as for a counting
query. Therefore, the costs of the first two supersteps
are the same. The third superstep is very similar to
the third superstep for answering a counting query.
The only difference is that we need to send the text
positions of all occurrences to the PE where the query
arrived initially. This costs O(|P|+ occ ·G+ L), where
occ denotes the number of occurrences of P at PE ` and
PE r. Last, we need to retrieve the text positions of all
occurrences of P in PEs j with j ∈ (`, r), which costs
O
(
(r − `)n

cG+ L
)

if ` < r + 1.
Answering any type (existential, counting or enu-

meration) of query has (asymptotically) the same cost
for the first two supersteps, as we send at most twice
as many queries to the second level (for counting and
enumeration queries). To answer counting queries we
send the leaf ranks during third superstep yielding a
cost of O(|P|+G+ L). In the last superstep we just
need to add up the number of occurrences in O(1) time.
When we consider enumeration queries, we need to re-
port all text positions where P occurs. Let occ be
the maximum number of occurrences of P in a PE j
for j ∈ [`, r], then the cost of the third superstep is
O(|P|+ occ ·G+ L). In the fourth superstep we need
to retrieve all positions from the PEs j for all j ∈ (`, r)
costing O(1 + c · occ ·G+ L). All in all we get the fol-
lowing costs.

Lemma 3.5. Given a pattern P answering an exis-
tential query costs O(ttrie(P) + |P|G+ L), answer-
ing a counting query costs O(ttrie(P) + |P|G+ L),
and answering an enumeration query costs

O(ttrie(P) + (|P|+ occ)G+ L), where occ denotes
the total number of occurrences of P.

Batched Queries and Load Balancing. When
we process a batch of q queries at once rather than a
single query, the number of supersteps does not increase,
i.e., we can amortize the startup latencies of the BSP
model over a large number of queries. Moreover, if the
local work and communication volume is well balanced
over the PEs, the query throughput scales linearly with
c. On the one hand, we can measure empirically how
well balanced the computation is – see also § 4. On the
other hand, we can see to what extent good balance can
be enforced.

Balancing the queries itself can be achieved using
any standard load balancing technique, i.e., assuming
that O(q/c) queries arrive at each PE is unproblematic.

Balancing how many queries get directed at each
local trie is more difficult, since certain patterns might
be more popular than others. However, we can use
“virtualization” – we split the corpus into c′ � c pieces
and distribute them randomly to the actual PE.

Similarly, some documents might be more popular
than others. However, by randomly permuting the
documents in the corpus, we can at least ensure that it
is unlikely that many popular documents are assigned
to the same PE.

When all these balancing conditions are fulfilled, a
batch Q of queries can be completed in time

O

1

c

∑
P∈Q

ttrie(P) + (|P|+ occ(P))G

+ L

 ,

where occ(P) denotes the number of occurrences of P
for an enumeration query (and 0 else).

Comparison to the Distributed Suffix Ar-
ray. Using the (multiplexed) distributed suffix array
(DSA) [1], a batch Q of q counting queries can be an-
swered in time

O

1

c

∑
P∈Q

tBin(P) + (|P| lg n
q

+ lg c)G

+ lg
cn

q
L

 ,

where tBin(P) denotes the time to identify the occur-
rences of the pattern P in the SA, i.e., |P| lg n. Dis-

tributing the queries costs O
(∑

P∈Q |P|+ |P|G+ L
)

and is dominated by the costs of answering the batch of
queries.

Comparing the costs of the DSA with our DPT we
get the following result: The maximum time used for

computation by each PE isO
(

1
c

(∑
P∈Q ttrie(P)

))
using

the DPT since we look in GT and at most two local

PTs for each query. The computation time required by

the DSA is O
(

1
c

(∑
P∈Q tBin(P)

))
and results from the

binary searches (local and inter-PE). Hence, the time
used for computation by each PE differs with respect to
the time required for searching the corresponding suffix
array interval for each pattern using a trie and using
binary search. Usually, we can assume that ttrie(P) is
smaller than tBin(P).

The cost of communication is
O
(

1
c

(∑
P∈Q(|P|)

)
G
)

using the DPT, as we just

send each pattern to at most two PEs and re-
trieve a substring of the length of the pattern. For
the DSA the cost of communication is higher, i.e.,

O
(

1
c

(∑
P∈Q |P| lg

n
q + lg c

)
G
)

because more sub-

strings need to be retrieved during the binary search.
This effect can be moderated by storing pruned suffixes
for each position of SA – see § 4.3. Still, the DPT
requires only a constant number of substrings to be
retrieved for each query.

Last, the synchronization using DPT is constant,
i.e., O(L), but using the DSA synchronization costs

O
(

lg cn
q L
)

. Due to the constant number of messages

being sent using the DPT, the synchronization cost is
optimal and a logarithmic factor worse using the DSA.

Therefore, if we assume an optimal distribution
of the queries and of the documents, the DPT is
theoretically faster than the DSA. This difference in
cost can also be seen in practice – see § 4. However,
the multiplexed DSA is very strong against query bias,
whereas the DPT can be affected by query bias resulting
in a load imbalance.

4 Experiments

We implemented the distributed Patricia trie using C++
(g++ 6.1 with flags -03 -march=native). The commu-
nication is handled by the Message Passing Interface
(MPI, Open MPI 1.10.3) with each MPI process rep-
resenting a PE of our algorithm. For the representa-
tion of bit vectors and the operations rank(), select()
and find close(), we use the succinct data structure li-
brary (sdsl-lite, 2.0.1) [12]. In particular we used the
rank support v5 for rank(), select support mcl
for select() and bp support sada for find close(). We
computed the SA and LCP-array using the implementa-
tion of Flick et al. [11]. The source code of our imple-
mentation and data required to reproduce our results
are available from https://github.com/kurpicz/dpt.

For our experiments we use the common crawl
corpus as input.1 It provides world wide web crawl data

1http://commoncrawl.org/

and contains raw content, text only and metadata of the
crawled websites from about 1.23 billion web pages. In
total the corpus has a size of 541 TB (as of 27.07.2016).
We use the WET files that contain only the text without
any tags or other meta information. (We removed all
additional data added by the common crawl corpus.)

The data we use for queries comes from the follow-
ing sources:

Text Retrieval Conference (TREC) Containing
all published test queries of the Million Query
Track, which contains 60k queries in total [26].

AOL Query Log (AOL) Contains around 20M web
queries collected from roughly 650k users that have
been collected over three months [27].

To the best of our knowledge, the distributed suffix
array (DSA) presented by Arroyuelo et al. [1] is the only
other (available) implementation of a distributed full-
text index. Hence, we compare our results with the
fastest variant of the DSA, the multiplexed distribution
of the SA. The implementation of the DSA only
supports counting queries. Therefore, in § 4.2 we only
compare the time for counting queries. We adapted the
(non-public) source code such that it works with texts
of size greater than 4 GiB.

All experiments were conducted on the Insti-
tutsCluster II (IC2) at KIT.2 The cluster has compute
nodes consisting of two Octa-Core Intel Xeon E5-2670
processors with 64 GB main memory and 2 TB exter-
nal memory. The nodes are connected using InfiniBand
QDR. Up to 32 nodes at a time were available for our
measurements. Each node runs 16 MPI processes and
in this section PE refers to MPI process.

4.1 Construction. As noted before, the construc-
tion of the SA and LCP-array are not part of this paper
– we start the timer as soon as each PE holds its local
share of the SA, LCP-array and T. Still, the construc-
tion of the SA and LCP-array are the bottleneck of our
data structure. Figure 3 shows the construction time of
the distributed Patricia trie using a weak scaling plot,
i.e., for each curve the amount of input data per PE is
fixed. In this case we used up to 100 GiB of text which
translates to 200 MiB of text per PE and constructed
the DPT for |P|max = 30. We could not run bigger ex-
periments as we were only able to compute the SA and
LCP-array for texts up to that size using the available re-
sources and the only distributed construction algorithm
that can compute both arrays, i.e., [11].

The construction time for the SA and LCP-array is
two to three times greater than the time required for

2https://www.scc.kit.edu/dienste/ic2.php

https://github.com/kurpicz/dpt
http://commoncrawl.org/
https://www.scc.kit.edu/dienste/ic2.php

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

s]

Number of PEs

CC100
OS100
CC200
OS200
SA200

Figure 3: Construction times of the DPT for 100 MiB
(CC100 and OS100) and 200 MiB (CC200 and OS200)
of text per PE, utilizing collective communication (CC)
and one-sided communication (OS). SA200 is the con-
struction time of the SA and LCP-array for 200 MiB
text per PE.

the construction of the DPT. Hence, we can say that
our construction time is reasonable and practical.

We compare two different variants of implemen-
tation: Using the collective communication operation
MPI Alltoallv and using a large batch of remote
direct memory access operations (RDMA, operation
MPI Get). Preparing the requests and constructing
the tree topology are the most time consuming tasks
during the construction of the DPT. One-sided commu-
nication turns out to be somewhat faster since it does
not need to send text positions first, but can directly
access the text. The amount of messages sent and re-
ceived by all PEs is (with a few small exceptions) ho-
mogeneously distributed among all PEs – see Figure 5
(left).

The space consumption of our index can be seen in
Table 1, where we compare the different representations
of the local Patricia tries. Since we need to keep track
of the nodes on the stack, the memory usage is higher
during the construction. In the following, we omit a
detailed analysis of DFUDS and BP, as LOUDS is better
with respect to size and speed.

The multiplexed distributed suffix array by Ar-
royuelo et al. [1] requires preprocessing of SA and T.
During the preprocessing, the multiplexed SA for each
PE is constructed and pruned suffixes for each text po-
sitions are stored accordingly (see § 4.3 for the effect
of pruning in practice). We refer to this preprocess-
ing as construction time. However, the process is not
distributed; one PE prepares all required files. There-
fore, we omit a comparison of the construction time with

Pointer BP DFUDS LOUDS

peak 46n 19n 18n 18n

size 42n 16n 16n 15n

Table 1: Bits needed to store the local tries during
construction (peak) and querying (size) using 40-bit
text positions.

DPT as it does not scale.
A standard question for a parallel algorithm is

about its speedup with respect to the best sequential
algorithm. This is important for understanding how
much overhead is involved in going to a distributed
environment. Since the SA and LCP-array construction
dominates index construction time and since there is no
tuned sequential implementation of DPT construction
itself, we make this comparison only for the SA and LCP-
array construction. The fastest sequential algorithm we
are aware of is divsufsort, which computes the SA (but
not the LCP array).3 Running the 64-bit version of
divsufsort 2.0.1 for 50 GiB on a machine with 512 GB
RAM and 4 Intel Xeon E5-4640 processors takes 42 247
seconds. Extrapolating this to 100 GiB gives 84 494
seconds – about 100 times more than the algorithm
from [11]. Note that divsufsort is much slower when
extrapolating from traditionally small inputs as we need
a 64-bit version, due to NUMA effects, and because for
really large inputs a logarithmic term in virtual address
translation becomes noticeable [16]. There exists also
a parallel variant of divsufsort, where one of its two
sorting steps is parallelized. Hence, not the whole
algorithm is executed in parallel. Therefore, on 50 GiB
and using 32 cores, it is only about 25% faster than
sequential divsufsort.

Another interesting comparison is with a state of
the art general purpose external memory algorithm [3].
Here, the algorithm from [11] on 512 processors is about
280 times (using somewhat faster processors but on
larger inputs than [3]).

4.2 Query Time. In this section we focus on pattern
matching queries. Once more, we perform a weak
scaling experiment to compare the times required to
answer batches of queries. This time, both the input
size per PE (200 MiB) and the number q of queries
arriving at each PE (20k, 40k and 80k) are fixed. Thus,
we build an index on up to 100 GiB of text, and want to
answer a batch of at most 41M queries. If the number of
queries exceeds the available number of queries (60k and

3https://github.com/y-256/libdivsufsort

https://github.com/y-256/libdivsufsort

20M for TREC and AOL queries, resp.), we replicate
the set of queries accordingly. Also, we stop the timing
as soon as the result for a query is known at any PE.
For example, if we have a counting query that can be
answered by a single PE, we do not send the result to
the PE where the query arrived initially.

Figure 4 shows the query times for existential,
counting and enumeration queries. DPT20 represents
the times required to answer a batch of 20k queries per
PE, DPT40 and DPT80 denote the times for 40k and
80k queries, using the pointer-based representation of
the tries. The labels DSA20 and LOUDS20 denote the
times for 20k queries using the DSA and the succinct
LOUDS representations of the DPT. We augment the
DSA with pruned suffixes of size 5 – see § 4.3 for more
details. All query types scale reasonably well with the
number of PEs. Existential queries can be answered
the fastest, as they only require a single blind search
(including the retrieval of a substring). They can be
answered up to twice as fast as the counting queries.

Counting queries require more work at each PE, as
we need to compute the number of occurrences, which
translates to two traversals from one node to a leaf at
the local PT. Comparing our implementation with the
DSA we see that we scale better as we can send our
queries to the PE that can actually answer them. This
allows us to answer queries up to 5.5 times faster. The
implementation of DSA only supports counting queries,
therefore, DSA only appears for counting queries in
Figure 4. When utilizing more than 32 PEs, DSA
becomes significantly slower than DPT. This is probably
due to the increasing number of messages sent by
the index that are necessary during the binary search,
whenever the pattern must be compared with the text.
For larger texts, there are fewer text positions that
correspond to text that is locally available. This effect
can be reduced by pruning (see § 4.3).

Last, we have enumeration queries, which are the
hardest to answer as we have to compute all text
positions. They can take up to 1.5 times as long as
counting and 3 times as long as existential queries.

The TREC queries are generally harder to answer
as there are fewer and we have duplicates as soon as
we require more than 60k queries. Duplicates lead to
a higher imbalance regarding the query distribution,
i.e., query bias – see Figure 5 (right) for the query
distribution among the PEs.

The succinct tree representations are reasonably
fast compared with the pointer based implementation
– see again Figure 4. LOUDS is the fastest of the three
tested succinct tree representations, being only 10%
to 20% slower than the pointer based implementation
but using only about a third of the space. This

means that succinct data structures allow us to use
2.5 times less memory to build the DPT for the same
text as a pointer based implementation. Counting and
enumeration queries are more expensive when it comes
to succinct tree structures, as we need to traverse the
trie multiple times if the pattern occurs.

4.3 Distributed Suffix Array – Pruning. In ad-
dition to the local multiplexed SA, the (multiplexed)
DSA also holds pruned suffixes, i.e., for each position in
the multiplexed SA, the first ` characters of the corre-
sponding suffix are stored. Since the text corresponding
to a suffix may not be available locally, this speeds up
the query time (by increasing the size of the index).
We tested different sizes ` for the pruned suffixes, us-
ing 200 MiB of text per PE and asking for 20k AOL
queries per PE, i.e., the same configuration as in our
experiments for the query times. The speedup is listed
in Table 2.

PEs ` speedup PEs ` speedup

2 0 1 8 0 1

5 1.04 5 1.13

10 1.20 10 1.51

15 1.28 15 1.54

20 1.33 20 1.71

4 0 1 16 0 1

5 1.33 5 1.05

10 1.42 10 1.67

15 1.41 15 1.75

20 1.45 20 1.92

Table 2: Speedup of the query time in the DSA with
respect to the size ` of the pruned suffixes.

Since the average size of an AOL query is 18, pruned
suffixes of size greater than 20 do not provide any
more significant speedup. In our experiments we used
pruned suffixes of size 5, as this adds 40 bytes to the
DSA per text position, which corresponds to the size of
our pointer based DPT representation. Choosing larger
pruned suffixes can speedup the DSA such that it is
faster than the DPT on 32 PEs. However, this also
results in an index that is larger than our DPT.

5 Conclusion and Future Work

We presented a distributed full-text index that sup-
ports existential, counting and enumeration queries. All
queries can be answered using a constant number of

 0

 50

 100

 150

 200

 250

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

E
x
is

te
n
ti

a
l

AOL

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

E
x
is

te
n
ti

a
l

TREC

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

C
o
u
n
ti

n
g

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

C
o
u
n
ti

n
g

DPT20
DPT40
DPT80
DSA20

LOUDS20

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

E
n
u
m

e
ra

ti
o
n

Number of PEs

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16 32 64 128 256 512

Ti
m

e
 [

m
s]

E
n
u
m

e
ra

ti
o
n

Number of PEs

Figure 4: Query times of the DPT for 200 MiB of text per PE. Each PE receives 20k (DPT20), 40k (DPT40) and
80k (DPT80) queries. LOUDS20 is the query time for 20k queries using LOUDS as succinct trie representation
and DSA20 is the query time for the distributed suffix array, also asking for 20k queries per PE.

messages with length proportional to the queries. Our
implementation scales well regarding the query process-
ing and is faster than the DSA when run on more than
32 PEs. For 512 PEs our index can answer a batch of
counting queries up to 5.5 times faster than the DSA.
Also, we use succinct data structures, resulting in lower
space requirements by a factor of 2.5 at only about 20%
slowdown.

Still, there are optimizations that may lead to better
performance in the future. One important issue is
to further develop and implement the load balancing
measures outlined in § 3.2. An orthogonal issue is to
consider a stream of queries, i.e., instead of a batch of
queries arriving at each PE at the same time, we assume
that queries can arrive at any PE at any time. This is a

real world problem, as for many applications, queries
do not arrive in a batch. For this setting, we need
asynchronous communication between the PEs. In this
scenario, an interesting question is at which amount of
queries batched query processing becomes more efficient
than the streaming mode.

In addition, our index can be extended to also an-
swer document retrieval queries [25], where the text is
composed of a number of (short) documents, and one
wishes to count or enumerate all documents containing
a given query pattern (documents containing the pat-
tern multiple times should only be counted/enumerated
once). For document counting, one could use the pre-
processing by Hui [14], while for optimal document list-
ing, the technique of Hon et al. [13] could be adapted.

 12.38
 12.4

 12.42
 12.44
 12.46
 12.48

 12.5
 12.52
 12.54
 12.56
 12.58

1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f

re
q

u
e
st

s
[%

]

Construction

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

[%
]

Querying AOL

 6.12
 6.14
 6.16
 6.18

 6.2
 6.22
 6.24
 6.26
 6.28

 6.3

1 3 5 7 9 11 13 15

N
u
m

b
e
r

o
f

re
q
u
e
st

s
[%

]

 0

 5

 10

 15

 20

 25

1 3 5 7 9 11 13 15

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

[%
]

 3.02
 3.04
 3.06
 3.08

 3.1
 3.12
 3.14
 3.16
 3.18

1 5 9 13 17 21 25 29

N
u
m

b
e
r

o
f

re
q
u
e
st

s
[%

]

PE

Send
Receive

 0
 2
 4
 6
 8

 10
 12
 14
 16

1 5 9 13 17 21 25 29

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

[%
]

PE

Queries

Figure 5: Work imbalance between different PEs. For each PE, we give the percentage of requests sent and
received during construction of the DPT and percentage of queries received during querying by each PE. Here,
the DPT is constructed for 200 MiB of text per PE and we ask for 20k AOL queries per PE.

This latter technique relies on a data structure for fast
range minimum queries [10], which has to be trans-
formed into a distributed environment.

Another interesting direction is the usage of com-
pressed cache-oblivious tries as shown by Ferragina and
Venturini [8]. Further improvements should also be pos-
sible using hybrid parallelism, i.e., to exploit that PEs
on the same compute node can quickly interact using
shared memory.

6 Acknowledgments

We would like to thank the authors of [1] for providing
their source code, and in particular Veronica Gil-Costa
for answering all questions regarding the implementa-
tion. We also want to thank Timo Bingmann for pro-
viding numbers on sequential suffix array construction.
Our research was supported by the German Research
Foundation (DFG), priority programme “Algorithms for
Big Data” (SPP 1736).

References

[1] Diego Arroyuelo, Carolina Bonacic, Veronica Gil-
Costa, Mauricio Marin, and Gonzalo Navarro. Dis-
tributed text search using suffix arrays. Parallel Com-
puting, 40(9):471–495, 2014.

[2] David Benoit, Erik D. Demaine, J. Ian Munro, Ra-
jeev Raman, Venkatesh Raman, and S Srinivasa Rao.
Representing trees of higher degree. Algorithmica,
43(4):275–292, 2005.

[3] Timo Bingmann, Johannes Fischer, and Vitaly Osipov.
Inducing suffix and lcp arrays in external memory. J.
Exp. Algorithmics, 21:2.3:1–2.3:27, 2016.

[4] David Clark. Compact Pat Trees. PhD thesis, Univer-
sity of Waterloo, 1996.

[5] Raphaël Clifford. Distributed suffix trees. J. Discrete
Algorithms, 3(2-4):176–197, 2005.

[6] Paolo Ferragina and Roberto Grossi. The string b-
tree: a new data structure for string search in external
memory and its applications. J. ACM, 46(2):236–280,
1999.

[7] Paolo Ferragina and Fabrizio Luccio. String search in
coarse-grained parallel computers. Algorithmica, 24(3-
4):177–194, 1999.

[8] Paolo Ferragina and Rossano Venturini. Compressed
cache-oblivious string b-tree. In Annual European
Symposia on Algorithms (ESA), volume 8125 of LNCS,
pages 469–480. Springer, 2013.

[9] Johannes Fischer and Pawel Gawrychowski. Alphabet-
dependent string searching with wexponential search
trees. In Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 9133 of LNCS, pages 160–
171, 2015.

[10] Johannes Fischer and Volker Heun. Space efficient
preprocessing schemes for range minimum queries on
static arrays. SIAM J. Comput., 40(2):465–492, 2011.

[11] Patrick Flick and Srinivas Aluru. Parallel distributed
memory construction of suffix and longest common pre-
fix arrays. In International Conference for High Per-
formance Computing, Networking, Storage and Analy-
sis (SC), pages 16:1–16:10. ACM, 2015.

[12] Simon Gog, Timo Beller, Alistair Moffat, and Matthias
Petri. From theory to practice: Plug and play with
succinct data structures. In International Symposium
on Experimental Algorithms (SEA), volume 8504 of
LNCS, pages 326–337. Springer, 2014.

[13] Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan,
and Jeffrey Scott Vitter. Space-efficient frameworks for
top-k string retrieval. J. ACM, 61(2):9:1–9:36, 2014.

[14] Lucas Chi Kwong Hui. Color set size problem with
application to string matching. In Annual Symposium
on Combinatorial Pattern Matching (CPM), volume
644 of LNCS, pages 230–243. Springer, 1992.

[15] Guy Jacobson. Space-efficient static trees and graphs.
In Annual Symposium on Foundations of Computer
Science (FOCS), pages 549–554. IEEE Computer So-
ciety, 1989.

[16] Tomasz Jurkiewicz and Kurt Mehlhorn. On a model
of virtual address translation. J. of Experimental
Algorithmics, 19:1.9:1–1.9:28, 2015.

[17] Juha Kärkkäinen, Peter Sanders, and Stefan
Burkhardt. Linear work suffix array construction. J.
ACM, 53(6):1–19, 2006.

[18] Fabian Kulla and Peter Sanders. Scalable parallel
suffix array construction. Parallel Computing, 33:605–
612, 2007. Special issue on Euro PVM/MPI 2006,
distinguished paper.

[19] N. Jesper Larsson and Kunihiko Sadakane. Faster
suffix sorting. Theor. Comput. Sci., 387(3):258–272,
2007.

[20] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and
Alexandru I. Tomescu. Genome-Scale Algorithm De-
sign: Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press,
2015.

[21] Veli Mäkinen, Gonzalo Navarro, and Kunihiko
Sadakane. Advantages of backward searching – effi-
cient secondary memory and distributed implementa-
tion of compressed suffix arrays. In International Sym-
posium on Algorithms and Computation (ISAAC), vol-
ume 3341 of LNCS, pages 681–692. Springer, 2004.

[22] Udi Manber and Eugene W. Myers. Suffix arrays:
A new method for on-line string searches. SIAM J.
Comput., 22(5):935–948, 1993.

[23] Donald R. Morrison. PATRICIA - practical algorithm
to retrieve information coded in alphanumeric. J.
ACM, 15(4):514–534, 1968.

[24] J. Ian Munro and Venkatesh Raman. Succinct rep-
resentation of balanced parentheses and static trees.
SIAM J. Comput., 31(3):762–776, 2001.

[25] Gonzalo Navarro. Spaces, trees, and colors: The algo-
rithmic landscape of document retrieval on sequences.
ACM Comput. Surv., 46(4):Article No. 52, 2014.

[26] National Institute of Standards and Technology. Mil-

lion query track, 2010. http://trec.nist.gov/data/

million.query.html accessed 04.07.2016.
[27] Greg Pass, Abdur Chowdhury, and Cayley Torgeson.

A picture of search. In International Conference on
Scalable Information Systems (INFOSCALE). ACM,
2006.

[28] Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L.
Oliveira. Parallel and distributed compressed indexes.
In Symp. on Combinatorial Pattern Matching (CPM),
volume 6129 of LNCS, pages 348–360. Springer, 2010.

[29] Kunihiko Sadakane and Gonzalo Navarro. Fully-
functional succinct trees. In Annual ACM-SIAM Sym-
posium on Discrete Algorithms, (SODA), pages 134–
149. SIAM, 2010.

[30] David B. Skillicorn, Jonathan M. D. Hill, and
William F. McColl. Questions and answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

[31] Leslie G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

http://trec.nist.gov/data/million.query.html
http://trec.nist.gov/data/million.query.html

	Introduction
	Overview.
	Related Work.

	Preliminaries
	Suffix Arrays.
	Tries.
	Succinct Data Structures.
	Model of Computation.

	Distributed Patricia Trie
	Construction.
	Querying.

	Experiments
	Construction.
	Query Time.
	Distributed Suffix Array – Pruning.

	Conclusion and Future Work
	Acknowledgments

