
Lightweight Distributed Suffix Array Construction∗

Johannes Fischer† Florian Kurpicz†

Abstract

We present two new distributed suffix array construc-
tion algorithms. One of our algorithms requires
only half as much memory as its competitor (PSAC)
[Flick & Aluru, SC 2015], while achieving similar speed.
In practice, we can compute on the same hardware suffix
arrays for text twice as large as PSAC. The other algo-
rithm still requires less memory than PSAC but is faster
on some instances. As a by-product, we also engineered
the first distributed string sorting algorithm. All of our
algorithms are tested on text collections of up to 115 GB
and running on 1280 cores.

1 Introduction

The suffix array [18,30] is one of the most well-researched
full-text indices, with numerous applications in text
indexing, text mining, computational biology, and many
more areas. We focus on its construction, which boils
down to sorting the suffixes in lexicographic order.
There exists plenty of work with respect to suffix array
construction in main memory, e.g., [2, 4, 10, 12, 14, 19,
22, 24–26, 29, 31–33, 35–41, 43, 44]. Puglisi et al. [42]
give an overview of suffix array construction algorithms
(SACAs), and categorize SACAs in three categories:
(1) Prefix doubling algorithms start with the length-
1 prefix of each suffix and determine their ranks, i.e.,
the number of smaller length-1 prefixes. Next, those
ranks are used to determine the ranks of the length-2
prefixes. The length of the prefixes is doubled during
each iteration until all ranks are unique. (2) Recursive
SACAs reduce the size of the text until all suffixes (in the
reduced text) are unique, and then recursively solve the
problem for the larger texts. Last, (3) induced copying
algorithms sort a small subset of suffixes and conclude
the lexicographical order of all other suffixes using the
sorted suffixes. Recently, another type of SACA has been
introduced: (4) grouping [4]. Here, suffixes are assigned
to groups that are then refined (and thus implicitly
sorted). This process is similar to induced copying, but

∗This work was supported by the German Research Foundation
(DFG) SPP 1736 priority programme “Algorithms for Big Data”.
†Technische Universität Dortmund, Department of Computer

Science, johannes.fischer@cs.tu-dortmund.de, florian.kurpicz@tu-
dortmund.de

the groups have more properties that are used to obtain
a linear time algorithm. Some SACAs combine recursion
and induced copying principles to obtain linear running
time, e.g., [40].

1.1 Related Work. Here, we focus mainly on prac-
tical work. All SACAs mentioned before work in main
memory, where the DivSufSort [15,35], an induced copy-
ing algorithm, is the fastest algorithm is practice, de-
spite having a supralinear running time. In theory, the
first linear time algorithm was Kärkkäinen and Sanders’
well-known recursive Skew/DC3 algorithm [22] with its
generalization DCX [23]. Looking at other models of
computation, Labeit et al. [28] parallelized the DivSuf-
Sort in shared memory. The DCX algorithm can also be
parallelized in this model [22]. In external memory there
exist SACAs based on prefix doubling [11,13], recursive
(DCX) [13] and induced copying [7, 20]. In distributed
memory, the model that we are considering in this pa-
per (see §2.1), Flick and Aluru [17] implemented a prefix
doubling algorithm (PSAC), which is our main competi-
tor. The DCX algorithm can also be parallelized in this
model [27,34].

We briefly consider distributed string sorting in §5.
To our best knowledge, there are no other distributed
string sorting implementations available. Bingmann et
al. [6] give an overview about the state of art in shared
memory string sorting, which we use for comparison
(to get a first feeling for the competitiveness of our
implementation).

1.2 Our Contributions. The two main results of
this paper are our two lightweight distributed SACAs:

• Our first SACA is a distributed prefix doubling
algorithm that is similar in speed compared to
PSAC, but requires less memory (in practice),
see §3.

• Then, we present the first distributed induced
copying SACA that is also the most lightweight
distributed SACA currently available, requiring
50 % less memory than PSAC (in theory and
practice), see §4.

As an additional result, we present the first practical
distributed string sorting implementation, which is part

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

mailto:johannes.fischer@cs.tu-dortmund.de
mailto:florian.kurpicz@tu-dortmund.de
mailto:florian.kurpicz@tu-dortmund.de

of our distributed induced copying SACA, see §5. Fur-
thermore, we conducted experiments on texts of size up
to 115 GB, which are at least an order of magnitude
greater than previously used texts, e.g., [17, 27].

2 Preliminaries

Let T = T[0] . . .T[n− 1] be a text of size n consisting of
characters from an ordered alphabet Σ of size σ := |Σ|.
Integers from i to j− 1 are represented by [i, j). We use
the notation T[i, j) for the substring T[i] . . .T[j− 1] and
call Pi := T[0, i) the i-th prefix of T. Analogously, Si :=
T[i, n) is the i-th suffix of T. The suffix array (SA) of
T is the permutation of [0, n) such that SSA[i] < SSA[i+1]

for all 0 ≤ i < n− 1.

2.1 Setting and Model of Computation. In our
setting, algorithms run on p distinct processing elements
(PEs) that are connected by a network, e.g., are dis-
tributed in a cluster on different physical hardware, such
as CPUs or CPU-cores. Each PE has a unique rank in
the range from 0 to p− 1. We analyze our algorithms in
the bulk-synchronous parallel (BSP) model [45]. Here,
each algorithm is a sequence of supersteps, with each
superstep being split into three phases: First, the PEs
can perform any number of operations based on local
data. We use w to denote the maximum time used by a
PE. Second, the PEs can send data to other PEs (com-
munication phase). Here, h is the maximum number
of machine words communicated by each PE, and G is
the running time required for the communication of one
machine word. Last, all PEs wait until every PE has
finished the first two phases. L is the time of this barrier
synchronization. There is no synchronization between
the first and second phase. PEs can start communicat-
ing as soon as they have finished working on the local
data (but data received during the communication is
not available for local operations before the next bar-
rier synchronization). Then, the total running time of
a BSP-algorithm is the time of all its supersteps, where
the time of one superstep is w + hG+ L.

The required space is not considered in this model.
However, it is important to note that we need to keep the
data that is communicated available until it has been
received by its recipient. Hence, sending h computer
words requires 2h computer words of space in total, as
also described in [17].

2.2 Distributed Arrays. We use distributed arrays
to store the suffixes in the different (sub-)classes Cαβ for
α, β ∈ Σ. Here, each PE holds a consecutive slice of the
array, i.e., given a distributed array C of length `, each
PE holds Θ(`p) elements, such that on PE i the j-th local

element is the j + ib `pc-th global element. A distributed

array supports two operations: pushback and pushfront
put data in the rightmost or leftmost unused space, resp.
The execution of one operation takes one superstep,
independently of the amount of data stored. Since the
operation can be called from multiple PEs during one
superstep, the data are stored in an order depending
on the rank of the PE that sends the data, i.e., when
we insert data into a distributed array (using pushfront)
originating from PE i and PE j with i < j ∈ [0, p), then
all data sent by PE i will have a smaller index in the
distributed array than any data sent by PE j (in the
same superstep). The operations are executed delayed,
i.e., elements are not stored immediately, but buffered
until communicate() is called. We only insert data using
the operations described above or access already stored
data. When we say in “reverse order”, we access all
elements stored in the distributed array from right to
left. We indicate two concatenated arrays using ⊗. In
this case, the whole arrays are concatenated, not just
the local slices.

3 On Distributed Prefix Doubling

The prefix doubling technique has been introduced by
Manber and Myers [30] when they first introduced the
suffix array. All prefix doubling SACAs share a common
core that we describe in the following. Given a text T
of size n:

1. Associate each index with a rank, i.e., the rank of
the character T[i] among all characters occurring in
T, thus creating rank-tuples 〈i, r〉. Also, let k = 0.

2. Check if all ranks are unique: if so, sort the tuples
by the second component. Now, the first component
corresponds to the SA. Otherwise, continue.

3. Construct rank-triples 〈〈i, r〉, r′〉, where 〈i, r〉 is the
previously considered rank-tuple and r′ is the rank
of the tuple with index i+ 2k (or 0 if i+ 2k ≥ n).

4. Sort the rank-triples by 〈r, r′〉 and determine new
ranks, i.e., compute new rank-tuples. Then, in-
crease k by one and continue with Step 2.

The concrete implementation depends on the model
of computation. Most prefix doubling algorithms differ
in Steps 3 and 4. Here, in Step 3 we sort the rank
tuples such that the required ranks are (if it exists) next
to each other. To this end, we sort the tuples using
(i mod 2k, i div 2k) as keys, where i is the index of the
sorted tuples. Now, the pair containing the other rank
in Step 4 is adjacent (if it exists).

Since we do not depend on the distance of two
tuples anymore, we can ignore rank-tuples that are
not required any more. We make use of a technique

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

called discarding, introduced by Dementiev et al. [13]:
we discard all suffixes that (a) have a unique rank and
(b) are not required anymore to determine a unique
rank for a suffix that does not have a unique rank.
Case (b) happens if the suffix occurs after a different
unique suffix in text order. We can determine all rank
tuples that can be discarded in one simple scan. In
addition, when we update the ranks, we must consider
the lexicographically smaller but discarded suffixes. To
this end, each rank always corresponds to the greatest
possible rank the suffix could potentially obtain, and is
only decreased during the algorithm. Therefore, smaller
discarded suffixes do not interfere with the update of the
ranks. This allows us to significantly reduce the cost of
global sorting, i.e., sorting all rank-tuples on all PEs.

The difference to the already existing distributed
prefix doubling SACA [17] is that they do not discard
rank-tuples that are not required anymore. Instead,
they manually compute new ranks without sorting, as
soon as the number of non-unique items has sunken
below a threshold. This allows them to save one global
sorting step (which is expensive in practice) during each
iteration of the algorithm.

A thorough analysis of a distributed prefix doubling
algorithm is given by Flick and Aluru [17]. The analysis
is the same for our distributed prefix doubling SACA,
as there is no theoretical difference between the two
approaches.

4 Distributed Induced Copying Suffix Array
Construction

Our algorithm is a distributed variant of DivSufSort [15,
35]. Given a text T of size n, we want to compute the SA.
We assume that T is distributed among all PEs such that
each PE holds a consecutive slice T′ of size n′ = Θ(np).

Thus, T′[j] := T[ibnp c+j] on all PE i for i ∈ [0, p) (similar

to the distributed array). Similarly, S′j denotes the j-th
suffix of T′ with respect to the whole text, i.e., on PE i
we have S′j = T[ibnp c+ j, n) for i ∈ [0, p).

4.1 Classification of Suffixes. We use the classifi-
cation introduced by by Itoh and Tanaka [19] to distin-
guish between two classes of suffixes (originally called
type A and type B suffixes) in combination with a no-
tation established by Kärkkäinen et al. [20] for a similar
classification [40]. Here, suffixes are represented by their
starting positions in T.

C− := {i ∈ [0, n) : Si > Si+1} and

C+ := {i ∈ [0, n) : Si < Si+1}.

We say “a suffix Si is in C” if i ∈ C, where C can
denote any class. The last suffix Sn−1 is in C−, as the

empty string is lexicographically smaller than any suffix.
Whenever the class of two consecutive suffixes differs,
we are interested in the suffix before the change.

C−. := {i ∈ C− : i+ 1 ∈ C+} ∪ {n− 1} and

C+. := {i ∈ C+ : i+ 1 ∈ C−}.

We call C−. and C+. sub-classes. Suffixes in C+. are
often called B?-suffixes [15, 35]. The last suffix Sn−1
belongs to C−. by definition. Also, the number of
suffixes in both C−. and C+. is at most n

2 . These sub-
classes are later used to identify fine-grained intervals in
the SA that we make heavy use of during our inducing
step, see §4.5. To this end, we also need all suffixes that
are followed by a suffix in the same class:

C−� := C− \ C−. and C+� := C+ \ C+..

We further need to filter suffixes by their first (two)
characters. For any (sub-)class of suffixes C described
above, let α, β ∈ Σ. Then:

Cα := {i ∈ C : T[i] = α} and

Cαβ := {i ∈ Cα : T[i+ 1] = β}.

This allows us to implicitly sort all suffixes lexicographi-
cally based on their type and first (two) characters:

Lemma 4.1. Let be α, β ∈ Σ, then

1. Si < Sj if i ∈ C−α and j ∈ C+
α , or if i ∈ C+.

αβ and

j ∈ C+�
αβ , and

2. Si > Sj if i ∈ C−.αβ and j ∈ C−�αβ ,

Proof. The first statement is proved in [15, Lemma 1].
The second statement works analogously.

Let
−→
C denote the starting positions of the suffixes in C

in lexicographical order. Using Lemma 4.1 we get the
following observation. (See Figure 1 for an example.)

Observation 1. We can express the SA as follows:

SA =
−−→
C−�00

−−→
C−.00

−−→
C+.

00

−−→
C+�

00

−−→
C−�01 . . .

−−−−−−→
C−�σ−1σ−1 . . .

−−−−−−→
C+�
σ−1σ−1

We also can identify the (sub-)class of a suffix easily by
its first character and the class of its succeeding suffix
(in text order):

Observation 2. For all i ∈ [1, n)

1. i− 1 ∈ C+� ⇐⇒ i ∈ C+ and T[i− 1] ≤ T[i],

2. i − 1 ∈ C−. ⇐⇒ either i = n or i ∈ C+ and
T[i− 1] > T[i],

3. i− 1 ∈ C−� ⇐⇒ i ∈ C− and T[i− 1] ≥ T[i], and

4. i− 1 ∈ C+. ⇐⇒ i ∈ C− and T[i− 1] < T[i].

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

i 0 1 2 3 4 5 6 7 8 9

T[i] a b b c a b a b c a

class + + + − + − + + − −

sub-class � � � . � .

(a)

i 0 1 2 3 4 5 6 7 8 9

SA[i] 9 4 0 6 5 1 7 2 8 3

Cαβ $ ab ba bb bc ca

class − + + + − + + + − −

sub-class . . � � . � . . � .

(b)

Figure 1: Classification of suffixes in text order (a) and suffix array order (b).

4.2 General Overview. Using the classification, we
can compute the SA in three steps:

1. On each PE, we compute C+. and the sizes of Cαβ
for all α, β ∈ Σ and (sub-)classes C for T′. The
results are communicated to get those sizes for T.

2. Next, we sort all suffixes in C+. lexicographically

to compute
−−→
C+. using a distributed string sorting

algorithm.

3. Last, we induce
−−→
C+� and

−−→
C−. using

−−→
C+. and then−−→

C−� using
−−→
C−..

We need w bytes to store an index position in the
SA, usually w = 4 for smaller texts and w = 5 for larger
texts (up to 1 TB).1 Considering the size of the text,
we assume that we need one byte per character, i.e.,
σ < 256. Thus, our SA is w times as large as T.

4.3 Identifying Suffixes in C+.. We first need to
identify those suffixes that are in C+., which can be
done by a right to left scan of the text. The last suffix is
in C− and thus we only need to look at two consecutive
characters to identify the type of a suffix:

Observation 3. Let i ∈ [0, n − 1). We know that
n − 1 ∈ C−. If T[i] > T[i + 1], then i ∈ C− and if
T[i] < T[i + 1], then i ∈ C+. Last, if T[i] = T[i + 1],
then i ∈ C− ⇔ i+ 1 ∈ C−.

In our distributed setting, only for PE p−1 the class
of the last suffix is known. Hence, we cannot simply
scan T′ right to left on any PE but the last. Instead, we
identify the first suffix Si that is definitely in C−, i.e., the
position where T′[i] > T′[i+ 1] with i < n′− 1. Starting
at this suffix, we can use Observation 3 to classify all
suffixes S′j with j < i. Next, we identify the classes of all
remaining suffixes. To this end, each PE sends T′[0] and
the class of S′0 to all other PEs. The class on PE i can be
unknown, i.e., there has been no suffix that is definitely

1In theory, dlgne bits would be sufficient. In practice, we use
a multiple of one byte for faster access.

in C−. In this case, we can conclude the type of all
suffixes on PE i using the class and the first character of
the first suffix on PE i+ 1. Since the class is known on
PE p− 1, we can resolve the class of all received suffixes
and thus, we can classify all suffixes that have not been
classified, yet. Within those suffixes, there is at most
one suffix in C+..

In total, we scan the local text at most twice,
send O(1) and receive O(p) computer words in one
communication phase.2 This leads to the following
Lemma:

Lemma 4.2. Identifying all suffixes in C+. costs

O
(
n
p + pG+ L

)
time.

While identifying the suffixes in C+. we also compute
the number of suffixes in all other (sub-)classes without
an overhead in running time. We use these sizes later
during inducing (see §4.5) to determine the positions of
an induced suffix in the SA using Observation 1.

Space. We need at most wn
2 bytes to store C+.

in a distributed array. Since we need to communicate
the suffixes, this requires twice the amount of space,
resulting in wn bytes. Storing all those positions requires
2σ2w bytes space on each PE, σ2w bytes for all suffixes
in C− and the same amount for the suffixes in C+.

4.4 Sorting Suffixes in C+.. We compute
−−→
C+. in

two steps. First, we sort the substrings between two
adjacent positions in C+. (in text order). Formally,
let next(i) = min{j > i : j ∈ C+. ∪ {n}}. This al-
lows us to define the C+.-ending substrings T+.

i =
T[i,min{next(i) + 2, n}). (The additional two charac-
ters are important to correctly sort the C+.-ending sub-
strings, see Figure 2 for an example.) We sort the C+.-
ending substrings using a distributed string sample sort.

2In practice, the communication overhead is very small (p� n)

and there are (again, only in practice) no unknown suffixes. Still,
we could further reduce the communication in exchange for more
supersteps using a prefix sum-like approach to resolve unknown

classes. This results in costs of O
(
n
p

+ G + lg pL
)

.

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

Substring s1 a b a a b

Substring s2 a b a b

Figure 2: Two C+.-ending substrings. The underlined
characters correspond to positions in C+.. If we
consider only the substrings starting and ending at those
positions, s2 is lexicographically smaller than s1, as it is
a prefix of s1. This can be avoided by considering one
additional character.

A detailed description of the sorting is given in §5.3

Here, the number of C+.-ending substrings m is
at most n

2 and the distinguish prefix size D (i.e., the
number of characters that must be compared to sort
the C+.-ending substrings lexicographically, see §5 for
a formal definition) is in practice roughly the same at
each PE (which is confirmed by our experiments, see
Table 1). Hence, we can sort the C+.-ending substrings

in O
(
n
p lg σ + n

pG+ L
)

time, using our distributed

string sorter described, which employs sample sort and
sorts the strings locally using multi-key radix sort.

Having sorted the C+.-ending substrings, we sort
all suffixes in C+. by using the ranks of the C+.-
ending substrings. We use an approach similar to prefix
doubling (see §3) with one difference: instead of using
the original input text, we use the ranks of the C+.-
ending substrings (in text order) as input T′ for the prefix
doubling algorithm. During each iteration we double the
size of the considered prefixes in T′. Thus, we implicitly
double the number of considered consecutive C+.-ending
substrings in T. Then, we compute the new ranks using
the old ones until all ranks are unique, as described in the
prefix doubling SACA in §3. Since the prefix doubling
algorithm relies on indices in the range from 0 to m,
where m is the number if considered suffixes/substrings,
we must transform the text positions of the C+.-ending
substrings accordingly. When all suffixes in C+. are
sorted, we reverse the transformation by first sorting
the rank-tuples in text order, and then identifying all
suffixes in C+. during a single scan of the text.

During the doubling approach, we have keys of
fixed length, i.e., the ranks. Hence, we can employ a
distributed sample sort [9] to sort them and do not rely
on a distributed string sorter as before. To this end, we

1. sort the data locally in O
(
m
p lg m

p

)
time and choose

p−1 local splitters from the local data, such that the
p partitions that are implicitly given by the splitters
have the same size (up to rounding). Then, we

3In §5, we describe general purpose string sorting algorithms.
Sorting C+.-ending substrings is just a special case.

2. gather all local splitters (on all PEs) to deter-
mine p − 1 global splitters (in the same way as
in Step 1) and partition the local data in total

O
(
p lg p+ m

p lg p+ pG+ L
)

time using the global

splitters. Next, we

3. distribute these partitions in O
(
m
p G+ L

)
time,

such that for any two PEs i, j with i < j all
elements on PE i are smaller than all elements on
PE j. Finally, we

4. merge the received partitions locally in O
(
m
p lg p

)
time to finish the distributed sample sort.

Thus, we can sort m elements in

O
(
m
p

(
lg m

p + lg p
)

+ p lg p+
(
m
p + p

)
G+ L

)
time.

In our scenario, m = O(n) and we need to use the
distributed sample sort O(lg n) times.

Lemma 4.3. Sorting all suffixes in C+.

lexicographically, i.e., computing
−−→
C+. costs

O
(
n
p (lg n+ lg p) +

(
n
p + p

)
G+ lg nL

)
time.

Space. During the sorting, we need 2w bytes to
represent the starting position of each suffix and its
rank. When we compute the new ranks, we must sort
the starting positions based on two ranks. This leads to
3w bytes per considered suffix (at most n

2). In total, this
requires 3wn bytes as we need space to receive data.

4.5 Inducing the Suffix Array. Now, we compute

the SA by inducing all other suffixes using only
−−→
C+.

and T, without any sorting. First, we induce
−−→
C+� and−−→

C−. from
−−→
C+. and the already induced suffixes in

−−→
C+�.

Then, we add the last suffix to its correct position in

C−.. Last, we induce
−−→
C−� from

−−→
C−., see Algorithm 1.

We assume that the sorted suffixes in
−−→
C+.
αβ are stored

in distributed arrays for α, β ∈ Σ. In general, all C-
objects in the algorithm are distributed arrays. The
algorithm runs on all PEs, and each PE only considers
its own slice of the distributed arrays when reading
from it (but the concatenation in lines 3 and 12 still
affects the whole distributed array). We first induce
from right to left (first inducing phase), i.e., in decreasing
lexicographical order (see loop starting at line 1). Here,

we induce all suffixes in
−−→
C+� and

−−→
C−.. Next, we

add the last suffix (line 9) before starting the second
inducing phase. Last, we induce the suffixes in increasing
lexicographical order (see loop starting at line 10).

During this step we require access to the text (from
arbitrary PEs), since we need to identify the bucket we

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 1: Inducing

1 for α = σ − 1 down to 0 do
2 for β = σ − 1 down to α do

3 for i ∈
−−→
C+.
αβ ⊗ C

+�
αβ in reverse order do

4 if i > 0 and T[i− 1] ≤ α then
5 C+�

T[i−1]α.pushfront(i− 1)

6 else if i > 0 then
7 C−.T[i−1]α.pushfront(i− 1)

8 communicate()

9 C−�T[n−1]0.pushback(n− 1)

10 for α = 0 to σ − 1 do
11 for β = 0 to α do
12 for i ∈ C−�αβ ⊗ C

−.
αβ do

13 if i > 0 and T[i− 1] ≥ α then
14 C−�T[i−1]α.pushpack(i− 1)

15 communicate()

induce the suffix into. To this end we distribute the text,
such that the substring T[idnp e,min((i + 1)dnp e), n) is
stored at PE i. Now, when we require the i-th character,
we know that it is stored on PE i/` and is the i%`-th
character in the local slice, where % denotes the modulo
operator. Then, before we induce the next suffixes
(pushfront or pushback operation in Algorithm 1), we
retrieve the first character of all suffixes that are induced
during this step in one communication phase, which
allows us to induce into the correct distributed array.

In practice, we can also make use of the property
that not all classes contain suffixes. The inner loops
(see lines 2 and 11) are implemented such that they skip
distributed arrays that cannot contain any (relevant)
suffixes, which are characterized by the following lemma:

Lemma 4.4. Let be α, β ∈ Σ, then

1. α < β ⇒ C−αβ = ∅,

2. α > β ⇒ C+
αβ = ∅, and

3. α = β ⇒ C−.αβ ∪ C
+.
αβ = ∅.

Proof. Due to the definition of C−αβ and C+
αβ (i ∈ C− ⇒

T[i] ≥ T[i+ 1] and i ∈ C+ ⇒ T[i] ≤ T[i+ 1]), the first
two statements are true. To prove the third statement
we assume that i ∈ C+.. Therefore, Si < Si+1 and
i+ 1 ∈ C−. This leads to T[i] = T[i+ 1] ≥ · · · > T[i+ j]
with T[i + j] being the first character strictly smaller
than T[i + 1]. This contradicts our initial assumption.
The proof of the last case (α = β ⇒ C−.αβ = ∅) works
analogously.

For each pair of characters there is a communication
phase (lines 8 and 15). This would be sufficient if we did

not insert into distributed arrays that we are currently
traversing. Unfortunately, there is one case where this
can happen. We describe how to handle this special
cases in the next paragraph.

The Special Case. A run of length r denotes a
substring T[i, i+r) with T[i] = T[i+1] = · · · = T[i+r−1]
for i ∈ [0, n − r). The algorithm (as just described)
cannot handle length-3 or longer runs, as this would
require to induce in the same distributed array that we
are currently traversing (lines 3 and 12). Since the arrays
are updated just before the next character combination
is considered, we never use the newly induced suffixes to
further induce any suffix. Fortunately, handling those
runs is easy in the distributed setting. If multiple runs
of the same character occur, suffixes that are induced
by the rightmost suffix in the run are interleaved. E.g.,
if we induce suffixes i and j in runs from SA-positions
k and ` with k < ` during the first inducing step, we
know that i− 1 occurs left of j − 1 in SA. This repeats
until one or both runs end and can be generalized for
an arbitrary number of runs, see Fig. 3 for an example.
Hence, we can compute the part of the SA where the
runs occur using only their length and the SA-position
they have been induced from.

To this end, we first determine all runs that must
be contained in the currently considered distributed
array and compute their lengths. Next, we communicate
this information among all PEs. Now, each PE can
determine which entries must be stored in its locals slice
of the distributed array, by simply unrolling the runs
similar to the example given in Figure 3.

The Costs of Inducing. In total, we consider each
entry of the SA exactly once. Since we use distributed
arrays, we know that the number of SA-positions on all
PEs is the same up to rounding. Also, the maximum
number of computer words sent and received is (asymp-
totically) the same. While there can be communication
phases where only one PE receives data, all PEs must
receive the same amount of data at some point (as the
content of the distributed array is stored equally among
all PEs). The additional costs of the steps required by
the special case are dominated by the costs described
above. Since we need a communication phase for each
pair of characters, we require O

(
σ2
)

supersteps. All this
requires wn bytes to store the induced suffixes and at
most twice as much to send the positions, when we store
them in a distributed array. This leads to the following
lemma:

Lemma 4.5. We can induce all suffixes in C−., C−�

and C+� in O
(
n
p + n

pG+ σ2L
)

time.

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

`− 3 j − 2 k − 2 `− 2 i− 1 j − 1 k − 1 `− 1 i j k `

e e e e
e e e e
e e e e
c e e e

c d e
c

PE 0 PE 1 PE 2 PE 3

Cee

Figure 3: The distributed array Cee of size 12 on four PEs. Initially, the text positions i, j, k and ` are contained
in Cee (the text starting at those positions up to the first mismatching character is given below these entries).
In this example, we induce from right to left. The arrows indicate the interleaved occurrences of the induced
suffixes that can be induced by just the length of the run. The colors of the arrows indicate the starting position
of the suffix (see the horizontal bars in the text). Arrows ending in a bar indicate that the suffix is induced into a
different distributed array.

Last, we need to transform the distributed arrays,
such that all suffixes on PE i are lexicographically
smaller than all suffixes on PE j if 0 ≤ i < j < p,
i.e., compute the final SA. To this end, we compute
the number of elements (in each distributed array)
that we must sent to each PE, then during one large
communication phase, we send them accordingly. The
memory required during this phase is 2wn

p bytes per PE.

4.6 Space and Time Requirements. The most
memory is required during the sorting of the suffixes in
C+., where we need 3wn bytes of memory in addition
to the text (n bytes) and 2σ2wp bytes for the size of
the (sub-)classes. During the classification, we need
wn+ 2σ2wp bytes and the text. Last, when inducing all
other suffixes, we need wn bytes in addition to the text.
This results in a maximum 3wn/p + 2σ2w bytes per
PE, when we distribute all data equally among all PEs.
Using Lemmas 4.2, 4.3, and 4.5 we get the following:

Corollary 4.1. Using p PEs, we can compute the

SA in O
(
n
p (lg n+ lg p) +

(
n
p + p

)
G+

(
lg n+ σ2

)
L
)

time, using 3wn+ 2σ2wp bytes of space.

The factor of σ2 in the space and in the costs for
the synchronization steps implies that this algorithm is
only applicable to at most medium-sized alphabets.

5 Distributed String Sorting

In this section, we describe a distributed variant of string
sample sort [6], which we used in §4.4 to sort the C+.-
ending substrings. Usually, atomic keys (keys that can
be compared with a single comparison) are considered
when sorting data. Longer strings, on the other hand,
cannot be compared with a single comparison, but have

to be compared character by character.
Let S := {s0, . . . , sm−1} be a set of m strings and let

D be the distinguishing prefix size of S, i.e., the number
of characters that must be compared to sort S lexico-
graphically. Formally, for a set S := {s0, . . . , sm−1} of

strings, D := 1+
∑m−1
i=0 max{lcp(si, t) : t ∈ S\si}, where

lcp(s, t) = max{i : s[0..i− 1] = t[0..i− 1]}. Further, let

M :=
∑m−1
i=0 |si| be the total length of all strings in

S. The strings are distributed among all PEs such that
each PE holds roughly the same number of characters
(if possible). For simplicity, we assume that on each PE
the local distinguishing prefix size, i.e., the number of
characters that must be compared to sort all strings that
are stored at the PE, is D′ = Θ(Dp) and that on each PE

there are strings of total length of m′ = Θ(Mp) charac-
ters. Those assumptions are feasible in our scenario as
we focus on the sorting of C+.-ending substrings that all
have a similar (short) length, see Table 1 for practical
measurements confirming this simplifying assumption.
Splitters are chosen in the same fashion they are chosen
in our distributed sample sort for atomic keys, which is
described in §4.4:

1. We first sort all strings locally on the PEs and
determine the local splitters. These splitters are
then shared among all PEs, and a common set of
p− 1 global splitters is chosen.

2. Using the global splitters, on each PE we determine
p intervals (on the locally sorted strings) that have
the global splitters as borders (the first and last
interval has only one global splitter as upper and
lower border, respectively).

3. We distribute the strings in these intervals among
all PEs, such that the strings in the i-th interval on

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

any PE are sent to PE i.

4. Since all strings that have been sent to any PE
are sorted, we simply merge the received intervals
locally to obtain the final sorting.

The most time consuming task is the sorting in
Step 1. Steps 2–4 work similar to the distributed sample
sort described in §4.4. The only difference is that we
need to consider strings instead of atomic keys.

Note that the sorting as described here differs from
the canonical sample sort, as we first sort the locally on
each PE before we determine the splitters. Since we sort
the strings locally, we only have to merge them later.
Hence, this approach could also be denoted as a sample
and merge sort hybrid.

6 Experiments

We conduct multiple experiments to determine the
running time and memory usage of three distributed
SACAs and multiple (shared and distributed memory)
string sorting algorithms. The experiments consist of
two parts.

First (§6.1), we present the main result of this paper,
and compare the following three distributed SACAs:

dPD our distributed prefix doubling SACA (see §3),

dDivSufSort our lightweight distributed SACA that is
described in §4 and based on induced copying,

PSAC the previously fastest distributed prefix dou-
bling SACA [17], and

DC3/DC7/DC13 Bingmann’s implementations [5] of
the distributed DCX algorithm [27], which use 32-
bit integers and therefore are restricted to texts up
to size 4 GB.

In addition, we include a shared memory version of
DivSufSort [28] to the experiments. For the shared
memory algorithms a PE is a thread. We execute the
shared memory version of DivSufSort on 20 PEs.

Both our SACAs (dPD and dDivSufSort) are avail-
able from https://github.com/kurpicz/dsss. We are
also aware of the following distributed SACAs that we
did not include in our evaluation: cloudSACA [1,34] (can-
not compute the SA for inputs of the size that we are con-
sidering due to their high memory requirements, see [17,
§6.3] for details), and multiple distributed SACAs im-
plemented using Thrill [8] (which is a framework for
distributed big data batch computations that currently
does not support high performance networks natively,
which we use in our experiments).

Second (§6.2), we compare different sequential string
sorting algorithms that we use in distributed string

Name n σ Mean SD

CC 140 GB 242 6.00 0.92
DNA 164 GB 4 6.65 1.58
Prot 36.8 GB 26 6.12 0.66
Wiki 130 GB 213 6.39 1.49

Table 1: Information about the texts used in our
experiments. Mean denotes the average length of all
C+.-ending substrings in the text, and SD denotes the
standard deviation of those lengths.

sorting (DSS) algorithms. As a sanity check, we compare
our DSS algorithm with shared memory parallel string
sorting (PSS) algorithms presented by Bingmann et
al. [6], since we are not aware of any other distributed
string sorting algorithm.

For our experiments, we used real-world texts (see
Table 1 for details). Whenever we use smaller texts
throughout our experiments, we work on a prefix of the
corresponding text.

CommonCrawl (CC) Text of websites contained in
CommonCrawl’s web archive, where we removed
all meta data and markup commands (http://
commoncrawl.org/).

DNA FASTQ files from the 1000 Genomes project,
where we ignored all lines but the one con-
taining the raw sequence letters (http://www.
internationalgenome.org/).

Prot FASTA files (Protein-data) from the Univer-
sal Protein Resource (UniProt), where we only
kept the sequence representation (https://www.
uniprot.org/downloads).

Wiki Current version of each article on Wikipedia in
English, Finnish, French, German, Italian, Pol-
ish, and Spanish in XML-format (https://dumps.
wikimedia.org).

We conducted our experiments on a cluster. Here,
we have access to 316 nodes each equipped with two Intel
Xeon E5-2640v4 (10 cores each, 32 KB L1, 256K KB
L2, 25.6 MB L3 cache) and 64 GB RAM. The nodes
are connected via Interconnect Infiniband QDR. In
our experiments, a PE corresponds to one MPI-thread
running on one dedicated CPU-core. We compiled all
algorithms with g++ version 7.3.0 using -O3 -DNDEBUG
-march=native for optimization. Each reported time is
the median time of five executions. The timing starts as
soon as the local slices of the text are available in RAM.

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

https://github.com/kurpicz/dsss
http://commoncrawl.org/
http://commoncrawl.org/
http://www.internationalgenome.org/
http://www.internationalgenome.org/
https://www.uniprot.org/downloads
https://www.uniprot.org/downloads
https://dumps.wikimedia.org
https://dumps.wikimedia.org

1 2 4 8 16 32 64
0

10

20

PEs p [20 · p]

ti
m

e
[m

in
]

CC

1 2 4 8 16 32 64
0

5

10

PEs p [20 · p]

DNA

1 2 4 8 16 32 64
0

1

2

3

4

PEs p [20 · p]

Prot

1 2 4 8 16 32 64
0

2

4

6

8

PEs p [20 · p]

Wiki

1 2 4 8 16 32 64
0

2

4

6

PEs p [20 · p]

m
em

or
y

[
G
B

#
P
E
s
]

1 2 4 8 16 32 64
0

2

4

6

PEs p [20 · p]
1 2 4 8 16 32 64

0

2

4

6

PEs p [20 · p]
1 2 4 8 16 32 64

0

2

4

6

PEs p [20 · p]

10 20 30 40 50 60 70 80 90
0

20

40

input size n [MB
#PE s]

th
ro

u
gh

p
u

t
[M

B s
]

10 20 30 40 50 60 70 80 90
0

100

200

input size n [MB
#PE s]

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

input size n [MB
#PE s]

10 20 30 40 50 60 70 80 90
0

20

40

60

80

input size n [MB
#PE s]

dPD dDivSufSort PSAC [17] DivSufSort (shared memory) [28]

DC3 [5] DC7 [5] DC13 [5]

Figure 4: Running times of the SACAs in our weak scaling experiments using 90 MB (CC, DNA and Wiki)
and 28 MB (Prot) input text per PE (first row), the corresponding memory peak per PE (second row), and the
throughput during our breakdown test on 320 PEs.

6.1 Evaluating Distributed Suffix Array Con-
struction. We visualized the results of our experiments
in Figure 4. The first two rows correspond to our weak
scaling experiment, where we run all SACAs with 90 MB
(CC, DNA and Wiki) and 28 MB (Prot) of text as input
per PE. Due to memory constraints dPD, PSAC, and
the DCX algorithms cannot use all CPU-cores on each
node, as the total amount of RAM does not suffice on a
single node.

On all texts but DNA, one of our algorithms is the
fastest, when the input text is larger than 4 GB. Our
prefix doubling algorithm is faster than dDivSufSort on
all texts but Wiki. PSAC is especially fast on DNA, here
it is up to 2.5 times faster than our algorithms. On the
other hand, PSAC crashes during the computation of

the SA of the 115 GB prefix of CC. The DCX algorithms
can run on up to 40 PEs (80 PEs for Prot), as in our
experiment the input is larger than 4 GB on more PEs.
DC7 and DC13 are the fastest distributed SACAs on
all texts but DNA. The great increase in running time
on more than 640 PEs is due to the cluster. Our nodes
share switches with nodes used by other applications.
These switches only have a 1: 3 blocking ratio. Hence,
we do not have a guaranteed bandwidth. On average,
dDivSufSort is 25 % slower and dPD is 15 % slower than
PSAC considering all texts. The median running time
of dDivSufsort and dPD is 3.33 % slower and 5.3 % faster
than PSAC, resp. Ignoring DNA, dDivSufSort is only
5.97 % slower and dPD is even 5.33 % faster than PSAC
(on average). The shared memory version of DivSufSort

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

1
10

1
2

1 2 4 8 16 32 64
5

10

15

20

ti
m

e
[s

]

CC (C+.-ending substr.)

1
10

1
2

1 2 4 8 16 32 64

5

10

15

20

DNA (C+.-ending substr.)

1
10

1
2

1 2 4 8 16 32 64

0

5

10

CC (per line)

1
10

1
2

1 2 4 8 16 32 64
0

5

10

15

20

PEs p [20 · p]

ti
m

e
[s

]

PROT (C+.-ending substr.)

1
10

1
2

1 2 4 8 16 32 64

5

10

15

20

25

PEs p [20 · p]

Wiki (C+.-ending substr.)

1
10

1
2

1 2 4 8 16 32 64
0

0.5

1

1.5

PEs p [20 · p]

Prot (per protein)

MSD radix sort burstsort multi-key sample sort pS5 (shared memory) [6]

Figure 5: Running times of the DSS and PSS algorithms. We consider the C+.-ending substrings of the input
text (first two columns) and general substrings (last column). The total size of the input texts is 90 MB per PE
for CC, DNA, Wiki and 28 MB per PE for Prot.

is slightly faster on all inputs but DNA, where PSAC
is incredibly fast. This is the expected behavior when
we compare a shared memory SACA with distributed
memory SACAs.

The memory peak of all algorithms is as expected;
it coincides with the theoretical results. dDivSufSort
requires half as much memory as PSAC on all instances.
This is because the dominating part (regarding the mem-
ory requirements) comes from the doubling steps (see
§4.4 where we use prefix doubling on a text consisting of
the ranks of the C+.-ending substrings). The changing
memory peak of dPD is due to the unknown amount
of rank-tuples are stored at the PE where they are dis-
carded. In practice, pPD requires less memory than
PSAC, while in theory, both have the same memory
requirements. To achieve this behavior, we use 40-bit in-
tegers for dPD and dDivSufSort. Unfortunately, PSAC
does not support (and cannot be easily changed to sup-
port) those and relies on 64-bit integers. DC7 and DC13,
the fastest distributed SACAs, require also the most
memory, while using 32-bit integers. The shared mem-
ory version of DivSufSort requires less memory than any
of the distributed memory algorithms. Again, this is the
expected behavior, as shared memory algorithms do not

need a buffer for communication.
Finally, we conducted a breakdown test (last row

in Figure 4), where we run the SACAs on 320 PEs
that are located on 16 nodes. We increase the input
size until the SACA cannot compute the SA due to
memory limitations. Here, we start with 10 MB per
PE (3.2 GB in total), which is also the maximum input
size for the DCX algorithms. All other algorithms
can handle larger input sizes. PSAC works for up to
40 MB per PE, dPD works for up to 70 MB per PE,
and dDivSufSort works for up to 90 MB per PE. We
can see a small communication overhead when looking
at the throughput for 10 MB inputs. Otherwise, the
throughput of all algorithms matches the running times
in our weak scaling experiment.

6.2 Evaluating Distributed String Sorting. As
pDivSufSort needs to sort strings (§4.4), we are inter-
ested in the DSS that is best suited for sorting the C+.-
ending substrings of the input strings. Here, we briefly
evaluate our new DSS algorithm from §5. There is a
degree of freedom in Step 1 (local string sorting), which
can use any sequential sorter. We tested all of the over
130 implementations from Bingmann et al. [6] and by

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Kärkkäinen and Rantala [21], but only show the run-
ning times for the choices where our DSS is fastest on
average (MSD radix sort, burstsort, multi-key quicksort,
and string sample sort). Figure 5 labels the algorithms
by these sequential string sorters.

The MSD string sorting (MSD) algorithms are
among the fastest in all tests.This is due to the small
size of the strings to be sorted. Second in running
time (compared to different MSD radix sort variants)
are burstsort and sample sort variants that are around
15 % and 18 % slower, resp. When considering larger
alphabets (CC), burstsort is slower than sample sort
and both are slower than MSD radix sort (10 % and
12 %). The caching advantage of burst sort (compared to
MSD radix sort) is negligible as we use a more advanced
version of MSD radix sort, which employs an oracle to
reduce TLB and other cache misses. The behavior is as
expected, the running time mainly depends on the sorter
that we use to sort the data locally. All other steps (2–4)
are the same, independently from the algorithm used to
sort the strings locally.

We also tested the string sorting algorithms on
more general strings. To get more realistic strings,
we interpret each new line in CC and each protein in
Prot as one string, see Figure 5 on the right. The
strings are longer than the C+.-ending substrings. On
average, the substrings have length 39.15 and 54.14 with
a standard deviation of 636.20 and 13.03 for CC and
Prot. As a sanity check (and in the absence of a true
competitor), we compared our distributed string sorter
to the fastest PSS algorithm (pS5 [6]), which is around
three times faster than our DSS algorithms. This comes
at no surprise as we do not make use of shared memory
parallelism but distributed memory parallelism, which
allows us to use more than 20 PEs instead.

7 Conclusions

We presented the first distributed SACA based on
induced copying and the first distributed string sorting
implementations. Our SACA is competitive when it
comes to running time but has an up to 50% smaller
memory footprint than its competitor [17], allowing us
to compute the SA for larger texts on the same hardware.

In the future, we want to also compute the size of the
longest common prefixes (LCP) of all suffixes consecutive
in the SA. Access to the SA and LCP-array allows us to
compute further distributed full-text indices, e.g., [3,16].
Since we want to compute suffix arrays for even larger
texts, a hybrid approach that combines external SACAs
(e.g., [7, 20]) and our distributed SACA is a promising
direction of research, as the size of the SA (and LCP-
array) exceeds even the size of the distributed memory
available in medium sized clusters.

References

[1] Ahmed Abdelhadi, AH Kandil, and Mohamed Abouel-
hoda. Cloud-based parallel suffix array construction
based on mpi. In Middle East Conference on Biomed-
ical Engineering (MECBME), pages 334–337. IEEE,
2014.

[2] Donald A. Adjeroh and Fei Nan. Suffix sorting
via Shannon-Fano-Elias codes. In Data Compression
Conference (DCC), page 502. IEEE, 2008.

[3] Diego Arroyuelo, Carolina Bonacic, Veronica Gil-Costa,
Mauricio Marin, and Gonzalo Navarro. Distributed
text search using suffix arrays. Parallel Computing,
40(9):471–495, 2014.

[4] Uwe Baier. Linear-time suffix sorting - A new approach
for suffix array construction. In Annual Symposium on
Combinatorial Pattern Matching (CPM), volume 54 of
LIPIcs, pages 23:1–23:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[5] Timo Bingmann. pdcx, https://github.com/

bingmann/pDCX, 2018.
[6] Timo Bingmann, Andreas Eberle, and Peter Sanders.

Engineering parallel string sorting. Algorithmica,
77(1):235–286, 2017.

[7] Timo Bingmann, Johannes Fischer, and Vitaly Osipov.
Inducing suffix and LCP arrays in external memory.
ACM Journal of Experimental Algorithmics, 21(1):2.3:1–
2.3:27, 2016.

[8] Timo Bingmann, Simon Gog, and Florian Kurpicz.
Scalable construction of text indexes. CoRR (accepted
for publication in IEEE BigData 2018), abs/1610.03007,
2016.

[9] Guy E. Blelloch, Charles E. Leiserson, Bruce M.
Maggs, C. Greg Plaxton, Stephen J. Smith, and
Marco Zagha. A comparison of sorting algorithms
for the connection machine CM-2. Commun. ACM,
39(12es):273–297, 1996.

[10] Stefan Burkhardt and Juha Kärkkäinen. Fast
lightweight suffix array construction and checking. In
Annual Symposium Combinatorial Pattern Matching
(CPM), volume 2676 of LNCS, pages 55–69. Springer,
2003.

[11] Andreas Crauser and Paolo Ferragina. On constructing
suffix arrays in external memory. In European Sym-
posium on Algorithms (ESA), volume 1643 of LNCS,
pages 224–235. Springer, 1999.

[12] Felipe Alves da Louza, Simon Gog, and Guilherme P.
Telles. Inducing enhanced suffix arrays for string
collections. Theor. Comput. Sci., 678:22–39, 2017.

[13] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert,
and Peter Sanders. Better external memory suffix
array construction. ACM Journal of Experimental
Algorithmics, 12:3.4:1–3.4:24, 2008.

[14] Martin Farach. Optimal suffix tree construction with
large alphabets. In Annual Symposium on Foundations
of Computer Science (FOCS), pages 137–143. IEEE,
1997.

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

https://github.com/bingmann/pDCX
https://github.com/bingmann/pDCX

[15] Johannes Fischer and Florian Kurpicz. Dismantling
divsufsort. In Prague Stringology Conference (PSC),
pages 62–76. Department of Theoretical Computer
Science, Faculty of Information Technology, Czech
Technical University in Prague, 2017.

[16] Johannes Fischer, Florian Kurpicz, and Peter Sanders.
Engineering a distributed full-text index. In Workshop
on Algorithm Engineering and Experiments (ALENEX),
pages 120–134. SIAM, 2017.

[17] Patrick Flick and Srinivas Aluru. Parallel distributed
memory construction of suffix and longest common pre-
fix arrays. In International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), pages 16:1–16:10. ACM, 2015.

[18] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim
Snider. New indices for text: PAT trees and PAT
arrays. In Information Retrieval: Data Structures
and Algorithms, chapter 3, pages 66–82. Prentice-Hall,
1992.

[19] Hideo Itoh and Hozumi Tanaka. An efficient method
for in memory construction of suffix arrays. In Interna-
tional Symposium on String Processing (SPIRE), pages
81–88. IEEE, 1999.

[20] Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi,
and Bella Zhukova. Engineering external memory
induced suffix sorting. In Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 98–
108. SIAM, 2017.

[21] Juha Kärkkäinen and Tommi Rantala. Engineering
radix sort for strings. In International Symposium
on String Processing (SPIRE), volume 5280 of LNCS,
pages 3–14. Springer, 2008.

[22] Juha Kärkkäinen and Peter Sanders. Simple lin-
ear work suffix array construction. In International
Colloquium on Automata, Languages and Program-
ming (ICALP), volume 2719 of LNCS, pages 943–955.
Springer, 2003.

[23] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt.
Linear work suffix array construction. Journal of the
ACM (JACM), 53(6):918–936, 2006.

[24] Dong Kyue Kim, Junha Jo, and Heejin Park. A fast
algorithm for constructing suffix arrays for fixed-size
alphabets. In Workshop on Experimental and Efficient
Algorithms (WEA), volume 3059 of LNCS, pages 301–
314. Springer, 2004.

[25] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and
Kunsoo Park. Constructing suffix arrays in linear time.
J. Discrete Algorithms, 3(2-4):126–142, 2005.

[26] Pang Ko and Srinivas Aluru. Space efficient linear time
construction of suffix arrays. J. Discrete Algorithms,
3(2-4):143–156, 2005.

[27] Fabian Kulla and Peter Sanders. Scalable parallel suffix
array construction. Parallel Computing, 33(9):605–612,
2007.

[28] Julian Labeit, Julian Shun, and Guy E. Blelloch.
Parallel lightweight wavelet tree, suffix array and fm-
index construction. J. Discrete Algorithms, 43:2–17,
2017.

[29] N. Jesper Larsson and Kunihiko Sadakane. Faster
suffix sorting. Theor. Comput. Sci., 387(3):258–272,
2007.

[30] Udi Manber and Gene Myers. Suffix arrays: a new
method for on-line string searches. siam Journal on
Computing, 22(5):935–948, 1993.

[31] Michael A. Maniscalco and Simon J. Puglisi. An
efficient, versatile approach to suffix sorting. ACM
Journal of Experimental Algorithmics, 12:1.2:1–1.2:23,
2007.

[32] Giovanni Manzini. Two space saving tricks for
linear time LCP array computation. In Scandinavian
Workshop on Algorithm Theory (SWAT), volume 3111
of LNCS, pages 372–383. Springer, 2004.

[33] Giovanni Manzini and Paolo Ferragina. Engineering a
lightweight suffix array construction algorithm. Algo-
rithmica, 40(1):33–50, 2004.

[34] Ahmed A Metwally, Ahmed H Kandil, and Mohamed
Abouelhoda. Distributed suffix array construction
algorithms: Comparison of two algorithms. In
Cairo International Biomedical Engineering Conference
(CIBEC), pages 27–30. IEEE, 2016.

[35] Yuta Mori. divsufsort, https://github.com/y-256/

libdivsufsort, 2006.
[36] Yuta Mori. SAIS, https://sites.google.com/site/

yuta256/sais, 2008.
[37] Joong Chae Na. Linear-time construction of com-

pressed suffix arrays using o(n log n)-bit working space
for large alphabets. In Annual Symposium on Com-
binatorial Pattern Matching (CPM), volume 3537 of
LNCS, pages 57–67. Springer, 2005.

[38] Ge Nong. Practical linear-time O(1)-workspace suffix
sorting for constant alphabets. ACM Trans. Inf. Syst.,
31(3):15, 2013.

[39] Ge Nong and Sen Zhang. Optimal lightweight con-
struction of suffix arrays for constant alphabets. In
International Workshop on Algorithms and Data Struc-
tures (WADS), volume 4619 of LNCS, pages 613–624.
Springer, 2007.

[40] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suf-
fix array construction by almost pure induced-sorting.
In Data Compression Conference (DCC), pages 193–
202. IEEE, 2009.

[41] Ge Nong, Sen Zhang, and Wai Hong Chan. Two effi-
cient algorithms for linear time suffix array construction.
IEEE Trans. Computers, 60(10):1471–1484, 2011.

[42] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin.
A taxonomy of suffix array construction algorithms.
ACM Comput. Surv., 39(2), 2007.

[43] Klaus-Bernd Schürmann and Jens Stoye. An incomplex
algorithm for fast suffix array construction. Softw.,
Pract. Exper., 37(3):309–329, 2007.

[44] Julian Seward. On the performance of BWT sorting
algorithms. In Data Compression Conference, (DCC),
pages 173–182. IEEE, 2000.

[45] Leslie G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais

	Introduction
	Related Work.
	Our Contributions.

	Preliminaries
	Setting and Model of Computation.
	Distributed Arrays.

	On Distributed Prefix Doubling
	Distributed Induced Copying Suffix Array Construction
	Classification of Suffixes.
	General Overview.
	Identifying Suffixes in C+.
	Sorting Suffixes in C+.
	Inducing the Suffix Array.
	Space and Time Requirements.

	Distributed String Sorting
	Experiments
	Evaluating Distributed Suffix Array Construction.
	Evaluating Distributed String Sorting.

	Conclusions

