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Abstract
The wavelet tree (Grossi et al. [SODA, 2003]) is a compact
index for texts that provides rank, select, and access oper-
ations. This leads to many applications in text indexing,
computational geometry, and compression. We present the
first distributed memory wavelet tree construction algorithms,
which allow us to process inputs that are orders of magni-
tude larger than what current shared memory construction
algorithms can work with. In addition, our algorithms can
easily be adapted to compute the wavelet matrix (Claude et
al. [Inf. Syst., 47:15–32, 2015]), an alternative representation
of the wavelet tree. In practice, one of our distributed memory
wavelet matrix construction algorithms is the first parallel
algorithm that can compute the wavelet matrix for alphabets
of arbitrary size.

1 Introduction
The wavelet tree [14] is a space-efficient data structure
with numerous applications in text indexing [14], the
construction of the Burrows-Wheeler Transform [3] and
answering longest common extension queries [18], data
compression [15], computational geometry [21] (as an
alternative to fractional cascading), and other areas
[8, 25]. The wavelet matrix [5] is an alternative
representation of the wavelet tree for large alphabets.

Related Work. In recent years, a lot of work has been
conducted on the parallel construction of wavelet trees in
shared memory [6, 11, 13, 20, 29, 30] as well as external
memory [6]. Extensive practical evaluations [6, 11] show
that the most promising approach is the so called domain
decomposition [11, 13, 20], which achieves the best overall

∗This work was supported by the German Research Foundation
(DFG), priority programme “Algorithms for Big Data” (SPP 1736).
†TU Dortmund University, Department of Computer Sci-

ence, patrick.dinklage@tu-dortmund.de, johannes.fischer@cs.tu-
dortmund.de, florian.kurpicz@tu-dortmund.de,

running times. On the other hand, the parallel split
algorithm [20] scales the best.

However, the proposed algorithms are bound to work
on a single machine and hence, the problem sizes that can
be handled are limited by its hardware. While the amount
of data being processed is typically becoming larger (big
data), Moore’s Law is nearing its physical bounds [31]
and so even though single machines can be equipped
with terabytes of RAM, the number of CPU cores—and
therefore the computational power—is essentially limited.

Our Contributions. We alleviate this issue by present-
ing the first parallel distributed memory wavelet tree con-
struction algorithms, allowing us to use multiple nodes
communicating over a network. The evaluation of our
algorithms on inputs of size up to 96 GiB using up to
1,920 cores on 96 nodes shows that we (1) can compute
wavelet trees for inputs no other wavelet tree construc-
tion algorithm can handle, (2) can achieve nearly linear
speed-up, (3) have algorithms that are communication
efficient, with a communication volume never exceeding
the input size, and (4) have algorithms that outperform
the best known sequential algorithm using two nodes
(a COST [23] of 2) and the best known shared memory
parallel algorithm using five nodes. In addition, one of
our wavelet matrix construction algorithms is the only
parallel algorithm that can compute wavelet matrices for
inputs over large alphabets.

Since distributed algorithms already exist for suffix
sorting [2, 9, 10, 12], our new algorithms are the next
logical step in distributed full-text indexing, e.g., towards
a distributed FM-index [14].

2 Preliminaries
Let T be a text of length n over an alphabet Σ. We use
zero-based indexing: T [0] is the first symbol of T and
T [n−1] is the last. For integers i and j with i < j < n, we
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m 0 1 2 3 4 5 6 7
(m)b 000 001 010 011 100 101 110 111
(m)rb 000 100 010 110 001 101 011 111
ρ3(m) 0 4 2 6 1 5 3 7

Figure 1: Bit-reversal permutation for k = 3.

denote by T [i..j] the substring of T starting at position
i and ending at position j, also including i and j. A bit
vector is a text over the binary alphabet.

For an integer m, let B = (m)b with |B| = k be the
binary representation of m using k bits and let Br be
the reversal of B. We call the integer represented by
Br = (m)rb the k-bit reversal of m and write ρk(m) for
short. For a fixed k, the bit-reversal permutation maps
each integer m < 2k to ρk(m). See Fig. 1 for an example.

The histogram of T maps each symbol c ∈ Σ to its
number occT (c) of occurrences in T . The σ symbols
with occT (c) > 0 are mapped to the effective alphabet
Σ′ = [0, σ − 1] of T , such that the lexicographic order
of Σ is preserved. Let effT (c) ∈ Σ′ be the rank of c in
the effective alphabet. Then, we call T ′ with T ′[i] :=
effT (T [i]) for each i < n the effective transformation of
T . See Fig. 2 for an example.

2.1 The Wavelet Tree. The wavelet tree [14] for a
text T is a binary tree of height dlg σe. Each node v
represents an interval [a, b] ⊆ Σ and is labeled by a bit
vector Bv. Bv contains one bit for each text position i
in text order where T [i] ∈ [a, b]: a 0-bit if T [i] ≤ ba+b

2 c
and a 1-bit otherwise (if T [i] > ba+b

2 c).
The root node represents the entire alphabet [a, b] =

Σ and thus its bit vector has length n. A node v has two
children iff |[a, b]| > 2. We apply the described structure
recursively for the left child to represent the interval
[a, ba+b

2 c] and the right child to represent [ba+b
2 c+ 1, b].

Following that, a leaf represents an interval of size one
or two. Fig. 2 shows an example of a wavelet tree.

There are two different representations of the wavelet
tree. In the node-based representation, we store a bit
vector for each node (as in Fig. 2) and use pointers for
navigation from a node to its children. Here, we can
interpret a bit in the wavelet tree as the direction one
needs to take in order to navigate to the leaf representing
the corresponding symbol: when encountering a 0, we
move to the left child and otherwise, we move to the right
child. This leads to the following observation.

wavelettree
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Figure 2: The wavelet tree (left), alphabet, effective
alphabet and binary representations of symbols (right)
for T = wavelettree. The effective transformation of T
is T ′ = 6 0 5 1 2 1 4 4 3 1 1. The texts above the node bit
vectors are shown only for comprehensibility; they are
not a part of the node labels and are not stored.

Observation 1. ( [13] ) For ` ≥ 0 and x ∈ Σ, the `-
bit prefix of (x)b encodes the path in the wavelet tree from
the root to the node on level ` whose interval contains x.

In the levelwise representation, we concatenate the
bit vectors on each level so that we have precisely n

bits per level. For navigation, we use constant-time
rank/select queries [26], which is asymptotically as fast
as using pointers [25], but reduces the overall memory
requirements (rank/select structures are needed anyway).

The size of any node’s bit vector can be precomputed
independently of the chosen representation. For every
c ∈ Σ, let the array C contain the sum of all occurrences
of symbols in T that are lexicographically smaller than
c, i.e., C[c] :=

∑c−1
x=0 occT (x). We define C[σ] := n.

Observation 2. Let [a, b] ⊆ Σ be the alphabet interval
represented by a wavelet tree node v. The length of the
bit vector Bv that labels v is |Bv| = C[b+ 1]− C[a].

The C array, typically used in the context of the
FM-index [14] to support the backward search algorithm
[7], can be computed from the histogram in time O(σ)
and requires σdlgne bits of space. Because there are at
most 2σ−1 nodes in the wavelet tree, we can precompute
the sizes (i.e., the number of bits) of all nodes also in
time O(σ) and store them in less than 2σdlgne bits.

2.2 The Wavelet Matrix. The wavelet matrix [5]
is an alternative representation of the levelwise wavelet
tree. Wavelet trees for texts over large alphabets have two
disadvantages: either storing the pointers of the (node-
based) wavelet tree dominates the memory requirements,
or we have to use additional binary rank and select queries
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Figure 3: Node ordering in the wavelet tree (left) and
the wavelet matrix (right). On the first two levels, the
ordering is equal due to the nature of the bit-reversal
permutation. On the third level, we observe how nodes 0
and 2 (left children of their respective parents) go to the
left part of the corresponding wavelet matrix bit vector
and nodes 1 and 3 (right children) go to the right. The
z` values display the number of 0-bits for each level `.

to navigate when querying the (levelwise) wavelet tree,
which makes them slow in practice. The wavelet matrix
solves this problem: it no longer needs pointers, but can
still be navigated using the same number of binary rank
and select queries as the node-based wavelet tree.

In the wavelet tree, the bit vectors of the single
nodes on level ` are concatenated from left to right. In the
wavelet matrix, they are concatenated in a different order:
all left children of their respective parents are moved to
the left and all right children are moved to the right.
Like in the levelwise wavelet tree, we then concatenate
the bit vectors of all nodes on every level. Fig. 3 shows
an example. The re-ordering of nodes corresponds to
the bit-reversal permutation of the node ranks on the
respective level [11]. In addition, for each level `, we
store the value z`, which is the number of 0-bits in bit
vector B`. It can be used to accelerate queries [5] while
requiring only negligible dlg σedlgne bits of additional
memory.

2.3 Distributed Parallel Computing. In dis-
tributed computing, we have p processing elements (PEs)
that can communicate to execute an algorithm in parallel.
For i < p, let PE i denote the i-th PE.

We analyze distributed algorithms in the bulk-
synchronous parallel (BSP) model [28, 33], where the
execution of an algorithm is divided into supersteps
and each superstep consists of three phases: (1) local
computation, (2) communication, during which messages
are passed but no local computation occurs on received
data, and finally a (3) barrier synchronization, which
marks the point in time where all PEs have received

their messages and are ready to proceed with local
computation, initiating the next superstep (if any).

Let G be the time required to communicate one
machine word over the network and L the time for one
barrier synchronization. Then, the time required for
one superstep is w + Gh + L, with w the maximum
time required for local computation and h the maximum
number of words communicated during the superstep on
any PE. The BSP costs of an algorithm are the time
required for all supersteps. We are also interested in
the communication volume, which is the total number
of words communicated over all supersteps by all PEs.
Regarding computations on single PEs, we use the word
RAM model, where we can perform arithmetic operations
on words of width O(lgn) bits in time O(1).

2.4 Prefix and All-to-All Sums. A common prob-
lem in distributed computing is finding the prefix sum of
a vector (x0, x1, . . . , xp−1), which is distributed so that
PE i knows only xi. The task of prefix summing is to
compute the vector of sums Xi =

∑i−1
j=0 xj so that after

the operation, PE i knows the sum Xi of values held
by PEs with lower rank. Similar to a PRAM-optimal
text book algorithm [16, section 2.1.1], in the distributed
setting, we can use a binary merge tree to compute the
prefix sum in time O(lg p) and O(lg p) supersteps with
any PE sending O(1) words in each superstep, resulting
in a communication volume of O(p) words. Assuming
that each xi comes from a universe of n words, the local
memory required is O(lgn) bits.

A related problem is computing of the sum
∑p−1
j=0 xj

of all local values and broadcasting it back to all PEs.
The general case is known as an all-to-all reduction
(or AllReduce) and supports any associative reduction
operation. In our case, where the reduction of two
elements is their sum, we henceforth use the term all-
to-all sum, which can also be computed using a binary
merge tree [27] and thus has the same asymptotic BSP
costs as prefix summing.

Lemma 1. Using p PEs, we can compute the prefix
sums and the all-to-all sum of a distributed vector of
p words from a universe of n words with BSP costs of
O(lg p+G lg p+L lg p), a communication volume of O(p)
words and using O(lgn) bits of local memory.
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BSP costs in O(·)

Algorithm Local Computation Communication Synchronization
Comm. Volume
in O(·) words

Domain Decomposition (§3.1) WlocalWT(n/p) + σ lg p G(σ lg p+ (n/p) lg σ/ lgn) L(lg p+ lg σ) n lgσ/ lgn+ σp

Bucket Sort (WT) (§3.2) (n/p) lg σ + σ lg p G(σ lg p+ (n/p) lg σ) L lgσ lg p n lgσ + σp

Bucket Sort (WM) (§3.2) (n/p) lg σ + lgσ lg p G(lgσ lg p+ (n/p) lgσ) L lgσ lg p n lgσ + lg σp
Split*(§3.3) (n/p) lg σ + σ lg p G(σ lg p+ (n/p) lg σ) L(lgσ + lg p+ lg(σ) lg(p)) n lgσ + σp

* Under the condition that the input is uniform, σ is a power of two and p is a multiple of σ; for details see §3.3.

Table 1: Overview of the BSP costs and communication volumes of the algorithms described in §3, listing the
wavelet tree (WT) and matrix (WM) versions of the bucket sort algorithm separately. The asymptotic amount of
required local memory is O ((n/p) lg σ + σ lgn) for all algorithms except for Bucket Sort (WM), which does not
require the O(σ) factor.

2.5 Histogram and Effective Alphabet. We de-
scribe how to compute the histogram and effective alpha-
bet of an input text T in distributed memory. Assuming
n ≥ p, we partition T such that PE i initially has part
Ti = T [idn/pe .. (i + 1)dn/pe − 1] of length dn/pe, i.e.,
T = T0T1 · · ·Tp−1. In the case that n is not a multiple of
p, PE p− 1 may have a shorter part, which we consider
an implementation detail.

Each PE first computes a local histogram by scanning
its local text part once. This takes O(n/p + |Σ|) time
(accounting also for initialization) and requires |Σ|dlgne
bits of local memory. In a second step, we compute the all-
to-all sum of the |Σ| words containing the local occurrence
counts for each symbol in Σ. In O(|Σ|) subsequent time,
we can reduce Σ to the effective alphabet Σ′ and store the
effective alphabet ranks of all symbols using |Σ| lg |Σ′|
bits on all PEs. We can then override T by its effective
transformation T ′ in one more scan taking O(n/p) time.

Lemma 2. Using p PEs, we can compute the histogram,
effective alphabet Σ′, effective transformation and the
node sizes of the wavelet tree for a text T ∈ Σn with
BSP costs of O(n/p + |Σ| + lg p + G|Σ| lg p + L lg p),
a communication volume of O(|Σ|p) words and using
|Σ|(dlgne+ lg |Σ′|) bits of local memory.

We note that for |Σ| > |Σ′|, this preprocessing may
asymptotically dominate the wavelet tree and matrix
construction algorithms that we describe in the following
sections. However, this step is optional in that a
larger alphabet would merely result in more levels being
constructed. In the following, we assume that the input
is given already in its effective transformation.

3 Wavelet Tree and Matrix Construction in
Distributed Memory

We present three distributed wavelet tree construction
algorithms that compute the wavelet tree of T such that
PE i holds the i-th part of length dn/pe bits of each level’s
bit vector. For these algorithms, we assume that the input
T is partitioned as described in §2.5. Furthermore, we
show how to alter each algorithm to compute the wavelet
matrix. Tab. 1 gives an overview of the BSP costs and
communication volumes of our algorithms.

3.1 Domain Decomposition. Domain decomposi-
tion [11, 13, 20] is a straightforward technique to dis-
tribute work. First, each PE i constructs the entire
wavelet tree for its input part Ti using a sequential algo-
rithm. We use the notation WlocalWT(n/p) for time and
MlocalWT(n/p) for bits of memory required for the local
sequential construction to abstract from the different
available algorithms (e.g., most algorithms require time
O(n lg σ), but more sophisticated algorithms require less
time [17] or less space [32][4]). Furthermore, we assume
that the wavelet tree is produced in its node-based rep-
resentation so that after local construction on PE i, we
have access to a bit vector Bv,i for every wavelet tree
node v. This scenario is depicted in Fig. 4. Empty nodes
are possible as the alphabet of the entire input is used for
construction of the local wavelet tree and some symbols
may never occur in the local part of the input. We now
merge the p partial wavelet trees into the global wavelet
tree for T . Let v0, . . . , v2`−1 be the 2` nodes on level
` < dlg σe. The bit vector for level ` is the concatenation

B` := (Bv0,0 · · ·Bv0,p−1) · · · (Bv2`−1,0 · · ·Bv2`−1,p−1).
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Figure 4: Domain decomposition of the wavelet tree for T = wavelettree using three PEs with T0 = wave (left),
T1 = lett (middle), and T2 = ree (right). Nodes are numbered in breadth-first search ordering.
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PE 0

B1,1 B2,1

PE 1
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PE 2
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D(1) d1(1) d2(1) D(2) d1(2) d2(2)

1 1 1

1
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B` =

Figure 5: Balanced merge operation for three PEs,
merging the bit vectors B1,i and B2,i of the second level’s
nodes (` = 1) into level bit vector B`. The top part shows
the local wavelet trees for each PE, the bottom part shows
the merged level bit vector. In B`, we mark the node
offsets D(1) and D(2) as well as the inner offsets di(1)
and di(2) for both nodes and each PE i < p.

In other words, we first concatenate the p bit vectors
for each node vk on level ` (with k < 2`) in PE order to
get the global node bit vectors Bvk

. We then concatenate
these 2` node bit vectors in node order to retrieve the
level bit vector B`. The fact that B` should be balanced
across the p PEs poses an additional challenge. For PE i

to find out where to send a certain part of Bvk,i for some
node vk, it needs to know
(1) the node offset D(vk) :=

∑k−1
j=0 |Bvj

|, i.e., the sum
of the (global) bit vector lengths of the nodes that
come before vk on level `, and

(2) the inner offset di(vk) :=
∑i−1
j=0 |Bvk, j |, i.e., the

number of bits for vk held by PEs before i.
The position D(vk) + di(vk) is then the position of the
first bit of local node bit vector Bvk,i in global level bit
vector B`. Since every PE will receive dn/pe bits, the
recipient for each local bit can be determined by dividing
its position in B` by dn/pe. Fig. 5 shows an example.

We can compute the node offset D(vk) in time

O(2`) = O(σ) using precomputed node sizes according
to Obs. 2 without any additional communication. The
computation of the inner offset di(vk), however, requires
a prefix sum. After the local construction phase, we
compute di for all O(σ) nodes in one single prefix sum
computation, i.e., for a vector of O(σ) words. This
requires O(σ) time and sending of O(σ) words in each
superstep in a total of O(lg p) supersteps.

Because the local wavelet tree was constructed
for a part of the input of length dn/pe, it holds that
|Bvk,i| ≤ dn/pe for any node vk. As a consequence, there
can be at most two different recipients for the bits of
Bvk,i. Therefore, with D(vk) and di(vk) known, we can
determine the recipients for all node bit vectors in O(σ)
total time. On any PE, the total number of words sent is
bounded by the number O((n/p) lg σ) of bits in the local
wavelet tree. Since we can packO(lgn) bits into one word,
we send O((n lg σ)/(p lgn)) words. However, in case
n/(p lgn) is not integer, each PE may send an additional
incomplete word for every node, resulting in a total of
O(σ) incomplete words in the worst case. We perform the
merge level by level, so we need a barrier synchronization
on each level, amounting to O(lg σ) total BSP barriers
for the merge. Regarding local memory consumption,
we require dn/pedlg σe bits to store the wavelet tree and
less than 2σdlgne bits for the precomputed node sizes.
Finally, we require a send/receive buffer of dn/pe bits.

Lemma 3. Using domain decomposition with p PEs,
we can construct the wavelet tree for T ∈ Σn with
BSP costs of WlocalWT(n/p) + O(σ lg p + G(σ lg p +
(n lg σ)/(p lgn)) + L(lg p+ lg σ)), a communication vol-
ume of O((n lg σ)/ lgn + σp) words and using at most
max{MlocalWT(n/p), dn/pe(dlg σe + 1) + 2σdlgne} bits
of local memory.
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Adaptation to the Wavelet Matrix. As described
in §2.2, the bit vector layout of the wavelet matrix only
differs from that of the wavelet tree in that the nodes
are re-ordered on each level according to the bit-reversal
permutation. Therefore, we can easily adapt the domain
decomposition for wavelet tree construction to construct
instead the wavelet matrix. Locally, on each PE, we first
construct the wavelet tree for the local part of the input.
We now only modify the merge operation to take into
account the bit-reversal permutation when concatenating
node bit vectors on each level. We can compute the
bit-reversal of a word of width O(lgn) bits in constant
time using a universal lookup table of size o(n), though
in practice, we use techniques using a constant number
of bitwise operations [19, p. 144]. Therefore, Lemma 3
applies to the distributed construction of the wavelet
matrix. It remains to compute the z` values, i.e., the
number of 0-bits on each level `. Taking Obs. 2 into
account, we can use the histogram to accumulate the
sizes of left children in the wavelet tree on level ` + 1,
which equals the number of 0-bits on level `. This requires
O(σ) time and a subsequent all-to-all sum, not worsening
the asymptotic BSP costs.

We note that this modification does not embrace the
motivation for which the wavelet matrix was invented,
which is the ability to handle large alphabets. Typically,
one wants to lose the linear dependency of the alphabet
size σ in the algorithm’s costs. The following approach
allows us to achieve this.

3.2 Stable Sorting. The stable sorting approach
[11, 29] constructs the wavelet tree level by level by
making use of Obs. 1. Let c ∈ Σ be a symbol from the
effective input alphabet with its binary representation
(c)b. For ` < dlg σe, let (c)b[`] be the `-th most significant
bit of (c)b. We then call (c)b[0..`] the `-bit prefix of (c)b.

We construct level ` of the wavelet tree as follows:
from the current text T` (with initially T0 := T ), we
first compute the bit vector B` with B`[i] := (T0[i])b[`]
for every text position i. If ` is not yet the last level,
we compute T`+1 by stably sorting the symbols of T` in
ascending order by their (`+ 1)-bit prefixes and proceed
with T`+1. An example is shown in Fig. 6.

The correctness of B` follows from the fact that the
symbols of T` are in the same order as their corresponding
bits in B`. This is easy to see for T0 = T . Sorting by

w a v e l e t t r e e

1 0 1 0 0 0 1 1 0 0 0
110 000 101 001 010 001 100 100 011 001 001

a e l e r e e w v t t

0 0 1 0 1 0 0 1 0 0 0
000 001 010 001 011 001 001 110 101 100 100

a e e e e l r v t t w

0 1 1 1 1 0 1 1 0 0 0

T0 =
B0 =

T1 =
B1 =

T2 =
B2 =

stable sort by first bit

stable sort by two-bit prefix

Figure 6: The stable sorting algorithm for T =
wavelettree. Below the symbols, we show the corre-
sponding bit in the level’s bit vector and the symbols’
binary representations. The bit prefix used as the sort
key is highlighted in bold.

the bit prefix moves all symbols whose next bit is 0 to
the left and those whose next bit is 1 to the right. This
corresponds to the path to their representing leaves in
the wavelet tree according to Obs. 1. Because the sorting
is stable, the relative order of the symbols is retained.

Since this approach reduces most of the wavelet tree
construction to stable integer sorting, it can be applied
to distributed computing with relative ease using a stable
distributed sorting algorithm, which ideally also balances
the sorted sequence across the available PEs.

Using the idea of a stable bucket sort, we can
employ the same techniques already used in the domain
decomposition. In the sort operation on level `, there
are 2`+1 distinct sort keys: the (` + 1)-bit prefixes of
the symbols. This equals the number of nodes on level
` + 1. Thus, we allocate 2`+1 buckets on each PE and
append each symbol to the corresponding local bucket
in a distributed left-to-right scan of the text. In order to
allocate the buckets, we previously scan the text once and
use counters to determine their sizes, which temporarily
requires at most σdlg(n/p)e bits of space. We concatenate
the buckets in the same fashion as the nodes of one level
in the domain decomposition’s merge, which produces
the stably sorted representation of T`+1.

Constructing the level bit vectors and filling the
buckets requires O((n/p) lg σ) time. Furthermore, we
need to compute prefix sums of the bucket sizes on each
level. Since there are O(σ) buckets in total during the
wavelet tree construction, this requires O(σ lg p) words
to be sent and takes O(σ lg p) time. Furthermore, the
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prefix summing requires O(lg p) BSP barriers per level,
i.e., O(lg p lg σ) barriers for all levels. Additionally to
prefix sum communication, during the concatenations,
we send O((n/p) lg σ) words (one word per symbol),
corresponding to the number of bits in the wavelet tree.
We require at most dn/pedlg σe+ 2σdlgne bits of local
memory to store the wavelet tree and precomputed
node sizes and an additional send/receive buffer of
dn/pedlg σe bits for the sort buckets. As opposed to
domain decomposition, we directly construct the wavelet
tree in its distributed levelwise representation and no
subsequent merge operation is necessary.

Lemma 4. Using distributed stable bucket sorting with
p PEs, we can construct the wavelet tree for T ∈ Σn

with BSP costs of O((n/p) lg σ + σ lg p + G(σ lg p +
(n/p) lg σ) + L lg σ lg p), a communication volume of
O(n lg σ + pσ) words and using at most 2(dn/pedlg σe+
σdlgne) + σdlg(n/p)e bits of local memory.

Adaptation to the Wavelet Matrix. As mentioned
in §3.1, the main idea behind the wavelet matrix is to
be able to handle large input alphabets. To this end, we
can simplify the bucket sorting approach to construct the
wavelet matrix using only a constant number of buckets.

Like in §2.2, we can describe the reordering of nodes
in the wavelet matrix in a more intuitive way: on level
`+ 1, all left children of the wavelet tree nodes on level
` are moved to the left and all right children are moved
to the right. Following this idea, in order to bring the
symbols of the text in the correct order to compute the
following level in the wavelet matrix, on level `, we stably
sort them according to their `-th bit only as opposed to
the (`+ 1)-bit prefix for the wavelet tree. Then, we have
only two distinct sort keys (0 and 1) and we can use the
bucket sort approach of with merely two sort buckets.
These buckets can be filled on the fly as we scan the
text to compute the bit vector of level `, which contains
precisely the `-th bits of each symbol. The fact that we
only have to deal with two buckets allows us to allocate
a single buffer of length dn/pe (where both buckets fit in
precisely) and insert the symbols with sort key 0 from
left to right and those with sort key 1 from right to left
in reverse while keeping track of the number of entries
in the 0-bucket, which marks the bucket boundaries.
Subsequently, we reverse the contents of the 1-bucket in-
place, requiring only a computation time linear in the size

of that bucket. This way, we do not need a preliminary
scan in order to find the bucket sizes. We can furthermore
use the tracked number of 0-bits to compute z` in an
all-to-all sum operation.

Using this approach, we lose the linear dependency of
σ in our costs: we no longer need to precompute the node
sizes in advance and store them, saving us O(σ) time and
up to 2σdlgne bits of local memory, and we only require
sizes and prefix sums for two instead of O(σ) buckets
on each level. However, we now need to account for
O(lg p) time and O(lg p) words sent for the prefix sums
per level, i.e., O(lg σ lg p) time and O(lg σ lg p) words in
total. The all-to-all summing operation on each level for
computing z` has the same asymptotic costs as the prefix
sum computation.

Lemma 5. Using distributed stable bucket sorting with
p PEs, we can construct the wavelet matrix for T ∈ Σn

with BSP costs of O((n/p + lg p) lg σ + G(lg σ lg p +
(n/p) lg σ) + L lg σ lg p), a communication volume of
O(n lg σ + p lg σ) words and using at most 2dn/pedlg σe
bits of local memory.

3.3 Split. The splitting algorithm follows an idea
similar to the recursive parallel split algorithm [20,
recursiveWT ] for shared memory scenarios: given text T
of length n over alphabet [a, b] ⊆ Σ for wavelet tree node
v, we first compute the node’s bit vector Bv in parallel
using the p available PEs and count the number z of
0-bits in the process. Then, we split up T into T 0 and T 1

according to the bits of Bv: if Bv[k] = 0 (for some k < n),
the symbol T [k] is appended to T 0 and analogously, if
Bv[k] = 1, T [k] is appended to T 1. We recurse on T 0 for
the left child of v using p zn PEs (but at least one) and on
T 1 for the right child using pn−zn PEs (also at least one).
By tying the number of used PEs to the relative number of
0- and 1-bits, we achieve load balancing in that we assign
more PEs to larger nodes. Fig. 7 visualizes the splitting
operation. In case only one PE remains to process a node,
we use a sequential construction algorithm to construct
the remaining wavelet subtree.

Although the distribution of node bit vectors is dif-
ferent, the scenario after the construction using splitting
is equivalent to that after the local construction phase in
domain decomposition, since the bit vectors remain in
PE rank order. Therefore, we can use the same merge
operation to retrieve the levelwise representation, for
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Figure 7: Split of the first level of our running example
T = wavelettree using three PEs. Initially, each PE i
has part Ti and decides which symbols go to T 0 and which
go to T 1. The symbols are communicated accordingly.

which we can reuse the precomputed node sizes as well
as the memory allocated for send/receive buffers during
the splitting phase.

The BSP cost analysis for this algorithm is complex
since whenever only one PE remains to compute a
wavelet subtree of height greater than one, we switch
to sequential construction. From here on, the PE no
longer communicates and the local computation depends
on the chosen sequential algorithm. Whether and how
often this case occurs during construction depends on
the distribution of the symbols in the input and thus,
so do the BSP costs. For this reason, we refrain from a
detailed analysis and consider only a favorable case.

We call a text uniform if all the symbols in it occur
equally often. We now assume that the input T is uniform,
that σ is a power of two and p a multiple of σ. Then,
T 0 and T 1 are always of the same length n/2 in every
recursion and we recurse on both using p/2 PEs each.

The lengths of T 0 and T 1 equal the sizes of the
left and right child of v, respectively. Therefore, the
communication of the symbols of T 0 and T 1 can be
done similarly to the bits in the domain decomposition’s
merge operation with all nodes on the same level being
processed in parallel. For this, we need to communicate
O(σ lg p) words for prefix sums and O((n/p) lg σ) words
for the split texts themselves. It again holds that each
text part needs to be sent to at most two different
recipients. Since this applies to both T 0 and T 1, we
have up to four recipients, which, however, has no effects
asymptotically. The splits thus take O((n/p) lg σ+σ lg p)
time. To store the partial wavelet tree and precomputed
node sizes, we require at most dn/pedlg σe + 2σdlgne
bits of memory. The two prefix sums (for T 0 and T 1)
and z can be stored in negligible dlgne additional bits
and finally, we need to store T 0 and T 1 as well as
send/receive buffers in additional 2dn/pedlg σe bits of

local memory. As mentioned previously, we merge the
partial wavelet trees using the same operation as for the
domain decomposition.

Proposition 1. For a uniform text T of length n over
an alphabet of size σ = 2k for some integer k > 0, we can
construct the wavelet tree using splitting with p = cσ PEs
for some integer c > 0 with BSP costs of O((n/p) lg σ +
σ lg p+G((n/p) lg σ+σ lg p)+L(lg σ+lg p+lg σ lg p)), a
communication volume of O(n lg σ+σp) words and using
at most 3dn/pedlg σe+ 2σdlgne bits of local memory.

Adaptation to the Wavelet Matrix. Since the sce-
nario after the construction using splitting is the same
as that after local construction in the domain decomposi-
tion, we can apply the same idea as in §3.1 to construct
the wavelet matrix by simply altering the communica-
tion pattern of the merge operation with respect to the
bit-reversal permutation.

4 Experiments
We implemented our distributed wavelet tree and matrix
construction algorithms and conduct two types of scaling
experiments in a cluster: a weak scaling experiment,
where we increase the size of the input as we increase the
number of PEs, and a breakdown experiment where we
increase the size of the input while keeping the number
of PEs fixed. To address the issue that the speedups
achieved by distributed memory computations may not be
justified in regard of the extra resources required for these
computations (as made aware by the COST model [23]),
we furthermore identify the number of nodes required
to outperform the best known sequential algorithm on
a single PE, as well as that required to outperform the
best known shared memory algorithm on a single node.

4.1 Experimental Setup. We conduct our evalua-
tion on a cluster of nodes, each equipped with two Intel
Xeon E5-2640v4 processors (20 PEs in per node) running
at 2.4 GHz with 25 MB of L3 cache and 64 GB of RAM.
The cluster’s nodes have hyperthreading disabled and it
cannot be activated by users. They are connected via
InfiniBand QDR (40 Gbit /s) with a blocking ratio of 1:3.
We construct wavelet trees and matrices for five texts
over different alphabets:
1. CC – a collection of texts from the Common Crawl

(http://commoncrawl.org) with σ = 242,
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Figure 8: Weak scaling results for wavelet tree construc-
tion with 1 GiB of input per node.

2. DNA – a sequence from the 1000 Genomes
project (http://www.internationalgenome.org) with
FASTQ information removed such that σ = 4,

3. Wiki – a Wikimedia dump in XML format of
English, Finnish, French, German, Italian, Pol-
ish and Spanish Wikipedia articles (https://dumps.

wikimedia.org) with σ = 213,
4. RuWB – Russian websites in Common Crawl (http:

//web-language-models.s3-website-us-east-1.

amazonaws.com/wmt16/deduped/ru.xz) over a word-
based alphabet with σ = 152,547,239, and

5. SA – the suffix array [22] of the 128 GiB prefix of
CC with σ = 137,438,953,472 (the suffix array is a
permutation, so each symbol is unique).

The texts over small alphabets (CC, DNA and Wiki)
are stored in plain ASCII format with one byte per input
symbol. For these texts, we first compute the effective
transformation—still encoding it using one byte per
symbol. The time required for this is not measured in our
evaluation. The texts over large alphabets, RuWB and
SA, are already stored in their effective transformation
with four or five bytes per symbol, respectively.

Implementation. We provide the implementations wt-
dd (domain decomposition of §3.1) and wm-dd (the
wavelet matrix variant), wt-split and wm-split (split of
§3.3), and finally wt-bsort and wm-concat (bucket sorting

of §3.2). In the variant wt-dynbsort of wt-bsort, we grow
buckets dynamically while constructing the level’s bit
vector instead of precomputing their sizes in a preliminary
scan. This causes more memory allocations, but the
skipped scan results in notably faster running times.

For local computations in the domain decomposition
(for local wavelet tree construction) and split (in case only
one PE remains to construct a wavelet subtree), we pick
wt_pc [11], because it is the fastest practical sequential
wavelet tree construction algorithm known to us.

We use MPI [24] for communication between PEs
and specifically their point-to-point send (non-blocking,
e.g., MPI_Isend) and probe/receive (blocking, e.g.,
MPI_Probe/MPI_Recv) operations. Where applicable,
we make use of MPI’s implementations of collective op-
erations like synchronization (MPI_Barrier), exclusive
prefix summing (MPI_ExScan) and all-to-all reduction
(MPI_Allreduce). Furthermore, we use MPI’s concept
of communicators to group nodes constructing the same
wavelet subtree in wt-split.

The source code is written in C++ and publicly avail-
able at https://github.com/pdinklag/distwt (the
repository also contains implementations using the Thrill
framework [1], which could not achieve competitive
throughputs and are not covered in this work). We
compile using the GNU g++ compiler version 7.3.0 and
link against the Intel MPI Library version 2018.3.

Performance Measurements. Throughout the exper-
iments, we measure three major performance figures:
(1) running time, (2) network traffic and (3) memory
usage. Time and memory usage are local figures that
we measure using wall clock times or counting memory
allocations, respectively. For measuring traffic, we build
a façade for all MPI operations that we use and estimate
their inter-node traffic, i.e., we do not count commu-
nication between PEs located on the same node. The
estimation is straightforward for the primitve send and
receive operations, where we can simply count the size of
each passed message. For the collectives (prefix summing
and all-to-all sums), since we do not know details about
the MPI implementations, we assume a binary merge tree
communication pattern as mentioned in §2.4. We believe
that this estimation is somewhat pessimistic in the worst
case and probably exceeds the actual traffic caused by
these operations. However, since they only make up for
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Figure 9: Weak scaling results for wavelet matrix construction with 1 GiB of input per node.

a small percentage of the total traffic (compared to the
larger payloads such as (bit-)strings), we consider this
potential excess negligible.

4.2 Weak Scaling Results. We conduct weak scal-
ing experiments where for N nodes, i.e., p = 20N , we
process a prefix of size n := N · GiB (one gibibyte per
node) of each input file T , so that PE i initially has
input part T [idn/pe .. (i+ 1)dn/pe − 1]. It is crucial to
note that, for the large alphabet inputs RuWB and SA,
taking a longer prefix also results in the input alphabet
becoming larger. We show
(1) the median throughput (the number of output bits

divided by the running time) over five iterations of
the histogram computation and construction of the
wavelet tree,

(2) the total network traffic caused by all nodes (excl.
traffic between PEs on the same node) and

(3) the average memory usage (RAM) per node.
We start timing as soon as the input is loaded into
memory on all PEs. The results for wavelet trees are
given in Fig. 8 and those for wavelet matrices in Fig. 9.
In the following, we first consider the results for the small
alphabet inputs (CC, DNA and Wiki) and then look at
the large alphabet inputs (RuWB and SA) afterwards.

Throughput. We see that all implementations scale
well with an increasing number of nodes. To exemplify
this, on CC, wt-dd achieves a median throughput of
1.42 Gibit /s using one node on a 1 GiB prefix and
95.32 Gibit /s using 96 nodes on a 96 GiB prefix (speedup
of about 67).

The highest throughputs are achieved by wt-
dynbsort (up to 95.47 Gibit /s on CC) and wt-dd (up
to 95.32 Gibit /s on CC), where wt-dynbsort seems to be
slightly faster overall (up to 61.5 % on CC at 32 nodes).
Their similarity in throughputs is notable and reflected
by the fact that wt-dynbsort can be seen as just the merge
operation of wt-dd with some slight differences: (1) wt–
dynbsort requires no preliminary local construction of
the wavelet tree and (2) communication is more local
in wt-dynbsort: when sorting by an (` + 1)-bit prefix,
the order only changes within blocks of symbols whose
`-bit prefix was the same, i.e., buckets get refined in each
sort operation and the distance between PEs that any
symbol is sent over becomes smaller on each level. This
results in increasing fast shared memory communication
of PEs on the same node, which is an advantage over
wt-dd. However, (3) in wt-dd’s merge, we communicate
bit vectors and pack eight bits into one byte, while we
need to communicate substrings to concatenate buckets
in wt-dynbsort. These occupy one byte per symbol (for
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the small alphabets) and thus increase the amount of
handled data by a factor of eight (or a multiple of eight
for larger alphabets).

The analysis is also valid for wt-bsort. Here, however,
the additional scan to determine the bucket sizes in
advance causes the throughput to plummet (half as low as
wt-dynbsort on CC at 96 nodes). On DNA, on the other
hand, we only do a single concatenation of two buckets
after constructing the first level and the throughputs of
wt-dynbsort and wt-bsort become nearly equal.

The fact that wt-split fares worst (up to 60 % lower
throughput than wt-dynbsort on CC at 56 nodes) is not
surprising, as it combines the two expensive operations
of wt-dynbsort and wt-dd: the split texts T 0 and T 1, for
a whole level, directly correspond to sorted buckets and
after construction, we need to perform a merge operation.

We observe similar throughputs for our the wavelet
matrix constructors. However, it is notable that even
though wm-concat is closely related to the wavelet
tree constructor wt-dynbsort, it achieves only lower
throughputs in comparison. The reason for this lies
in the fact that we only concatenate two buckets for each
level of the wavelet matrix. Other than in the wavelet
tree scenario, these buckets are arbitrarily scattered over
the PEs, so that no locality advantage comes into play
at lower levels. This issue is again less severe for DNA,
where we only construct two levels.

Traffic. Comparing the traffic of wt-dynbsort and wt-
dd, the factor of eight in the amount of communicated
data (symbols instead of bits) becomes very visible: on
CC at 96 nodes, we have a traffic of approximately
83 GiB for wt-dd and 665 GiB for wt-dynbsort (factor
8.01). We can also make out the equivalence of the
split texts communicated in wt-split to the buckets of
wt-dynbsort, causing very similar traffic footprints. Slight
differences occur as wt-split requires a merge operation
after construction and wt-dynbsort does not. However,
it should be noted that wt-split has even better data
locality on deeper levels than wt-dynbsort, because T 0

and T 1 are guaranteed to stay within the same node range.
This ultimately results in more shared memory traffic,
which we do not measure. The same observations apply
to the wavelet matrix constructors, however, with the
extra issues concerning wm-concat described above. The
traffic footprints of wt-dynbsort and wt-bsort are exactly
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Figure 10: Breakdown test results for wavelet tree
construction with four nodes.

equal: they only differ in local memory consumption; the
communicated data is the same.

RAM usage. Due to the low memory requirements of
wt_pc, wt-dd requires the lowest amount of RAM overall.
For the merge operation after construction, we only need
one buffer for sending and receiving wavelet tree levels
(bit vectors) as we merge level by level. We see that the
difference in memory usage of wt-bsort and wt-split is
precisely the memory required by the subsequent merge
operation in wt-split, i.e., that of wt-dd, matching our
theoretical analysis in Sect. 3.3. The difference between
wt-dynbsort and wt-bsort is the excess memory allocated
by wt-dynbsort when doubling bucket capacities as they
are filled (up to 33 % excess memory on CC at two nodes).

Similar observations apply for the wavelet matrix
constructors. Since wm-concat only needs two sort
buckets, which we manage in the same buffer (filling one
from the left and the other from the right), no dynamic
re-allocation is needed and thus the memory footprint
is better than that of wm-split (about 25 % less memory
on CC at two nodes). Still, the fact that wm-dd only
requires one buffer for merging bit vectors causes it to
achieve the lowest RAM usage for small alphabets.

Large Alphabet Inputs. We note that we only have
roughly 69 GiB of RuWB available and therefore did not
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Figure 11: Breakdown test results for wavelet matrix construction with four nodes.

do any experiments for this input beyond 64 nodes.
The algorithms with a linear dependency on the input

alphabet size, i.e., all except wm-concat, fail to process
most prefixes of RuWB and SA due to RAM limitations.
The only algorithm able to process all instances is wm-
concat with a near-constant memory footprint (2.49 GiB
on average per node on SA at 96 nodes, i.e., 2.49 times
the local input size) thanks to the constant number of
required buckets. No wavelet tree constructor processed
any prefix of SA successfully and only wt-split could
process small instances of RuWB (omitted in Fig. 8).

4.3 Breakdown Test Results. In our breakdown
test, we fix the number of nodes to four (p = 80) and
double the length n of the processed prefix in each
iteration, starting with 1 GiB and stopping where none
of our implementations succeeds any longer. We measure
the same values as in the weak scaling experiments and
give the results in Fig. 10 and Fig. 11.

The measured traffic and RAM are as expected
considering the weak scaling results. Correspondingly,
wt-dd and wt-bsort for the wavelet tree and wm-dd
for the matrix have the lowest memory footprints and
can therefore handle the largest inputs up to 236 =
64 GiB for the small alphabets, i.e., up to 16 GiB per
node. Regarding the large alphabets, wm-concat is
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Figure 12: COST [23] of wavelet tree construction for
16 GiB inputs.

again the only implementation that can successfully
handle similarly sized instances. The throughputs remain
roughly constant throughout all breakdown experiments
(decreasing by at most 15 % for wt-bsort on CC), so the
overhead caused by additional distribution is small.

4.4 Outperforming Single Threads and Nodes.
We conclude the experiments by finding the configuration
that outperforms a single thread, also known as COST [23],
which is the number of nodes required to achieve a higher
throughput than the best known sequential algorithm.
We extend this notion and also look for the configuration
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that outperforms the best known parallel shared memory
algorithm using PEs on a single node. To this end, we
compare to wt_pc as the single-threaded implementation
and to wt_dd_pc (the domain decomposition variant of
wt_pc) as the parallel shared memory implementation,
the two that achieved the highest throughputs [11]. We
fix the input prefix length to 16 GiB, which is the largest
that wt_pc and wt_dd_pc can successfully process in
our setup. For our distributed implementations, we
increase the number of nodes until we outperform both
wt_pc and wt_dd_pc, see Fig. 12. For wavelet matrix
construction, we do the same until we outperform wm_pc
and wm_dd_pc, see Fig. 13.

We note that wt-split failed for all inputs on a single
node due to RAM limitations. Apart from this, all of our
other implementations outperform the single-threaded
wt_pc on only one node, where further experiments have
shown that two PEs on that node already suffice. To that
regard, the COST [23] of our distributed algorithms is
very low. Outperforming the single-node parallel shared
memory implementations requires between three (wavelet
tree for Wiki) and five nodes (tree and matrix for DNA).

Fig. 14 shows the per-node memory usages for this
experiment, which are the same for wt_pc and wt_dd_pc
for all inputs. As one would expect, wt-dd requires
the least memory and has the same footprint as wt_pc,
as it uses the same algorithm for local construction.
However, in the case of DNA, wt-dd uses excess memory
to store each input symbol in a byte each rather than
compressing it to two bits. The bucket sorters, wt-bsort
and wt-dynbsort, require additional memory for the sort
buckets, which have a similar memory footprint to the
split texts in wt-split. Our implementations require less
per-node memory than the sequential and shared memory
implementations starting with two nodes (CC and Wiki)
to three nodes (DNA), which does not impact our low
COST given above. Due to high similarity of the results
(also studied in [11]), we omit the per-node memory usage
analysis for the wavelet matrix constructors.

5 Conclusions
We implemented and evaluated the first distributed
wavelet tree and matrix construction algorithms. The ap-
proach that works best for small alphabets is the domain
decomposition, however, we also gave an algorithm based
on bucket sorting that is able to handle large alphabets.
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Figure 13: COST [23] of wavelet matrix construction
for 16 GiB inputs.
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Figure 14: RAM usage in COST [23] experiments for
16 GiB inputs.

As an anonymous reviewer pointed out, an interesting
question arising from this work is how hybrids of shared
and distributed memory approaches fare in comparison to
those presented in this and previous works. For instance,
one could use domain decomposition in a way that each
node uses a shared memory algorithm to compute a local
wavelet tree, as opposed to each PE using a sequential
algorithm. We are planning to investigate this in the
future. Furthermore, in future work, we are going to look
into the distributed computation of the Huffman-shaped
wavelet tree and matrix [34] where the fact that it is no
longer balanced poses additional challenges. Finally, it
remains open how to efficiently implement queries using
a distributed wavelet tree or matrix.
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