
Faster Wavelet Tree Queries

Matteo Ceregini∗, Florian Kurpicz†, and Rossano Venturini∗

∗University of Pisa †Karlsruhe Institute of Technology
ceregini@studenti.unipi.it kurpicz@kit.edu

rossano.venturini@unipi.it

Abstract

Given a text, rank and select queries return the number of occurrences of a character up to
a position (rank) or the position of a character with a given rank (select). These queries
have applications in, e.g., compression, computational geometry, and most notably pattern
matching in the form of the backward search—the backbone of many compressed full-text
indices. Currently, in practice, for text over non-binary alphabets, the wavelet tree is
probably the most used data structure for rank and select queries. Our improved wavelet
tree representation and predictive model allows us to speed up queries by a factor of 2–3.

1 Introduction

Wavelet trees [17] are a compressible self-indexing rank and select data structure, i.e.,
they can answer rank (number of occurrences of symbol up to position i) and select
(position of i-th occurrence of symbol) queries, while still allowing to access the text.
This makes them an important building block for compressed full-text indices, e.g.,
the FM-index [10] or the r-index [14], where they are used to answer rank queries
during the pattern matching algorithm—the backwards search. More applications are
discussed in multiple surveys [12, 18, 23, 25]. Due to the plethora of applications, a lot
of research has been focused on the efficient construction of wavelet trees. However,
there exists barely any research focusing on the query performance of wavelet trees.
While there exist alternative representations of the wavelet tree (namely the wavelet
matrix) that provide better practical query performance, the better query performance
is more of a byproduct of a space efficient representation for large alphabets. The main
building block of wavelet trees are bit vectors with binary rank and select support.
There exist many different approaches tuning the rank and select support for query
time and/or space overhead. Faster binary rank and select queries directly translate to
faster queries on wavelet trees. However, improving only the binary rank and select
data structure still not fully utilizes the full range of optimizations.

Our Contributions. We show that using a 4-ary wavelet tree instead of the usual
binary wavelet tree results in a query speedup of up to 2 for all queries compared
to its competitor implemented in the widely used Succinct Data Structure Library
(SDSL) [15]. Furthermore, we introduce the rank with additive approximation problem
(see Section 3) and show how utilize a small prediction model to locate data necessary
during rank queries. We use this information to improve rank queries (which are
required for pattern matching) even more, achieving a total speedup of up to 3, by
prefetching all data necessary to answer the query, see Section 4.

ceregini@studenti.unipi.it
kurpicz@kit.edu
rossano.venturini@unipi.it

accessandselect

000011010101001

acceadeec

000101110

accac

01101
edee

1011

ssnslt

110101

nl

10

ssst

0001

accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

Figure 1: Wavelet tree (left) and a wavelet matrix
(right) for the text accessandselect over the alphabet
{a (000)2, c (001)2, d (010)2, e (011)2, l (100)2, n (101)2, s (110)2, t (111)2}
(bit representation of characters given in gray). Note that we depict the text for better
readability only; the text is not part of the wavelet tree or wavelet matrix.

Preliminaries. A bit vector is a text over the alphabet {0, 1}. Given a text T of
length n over an alphabet Σ = [0, σ). For i ∈ [0, n) and α ∈ Σ, we want to answer:

rankα(i) = |{j < i : T [j] = α}| and selectα(i) = min{j : rankα(j) = i}.

Both queries on bit vectors of length n can be answered in O(1) time with o(n)
additional bits [6, 19]. The most significant bit (MSB) of a character is the bit with
the highest value. We assume that the MSB is the leftmost bit. The i-th MSB is the
bit with the i-th highest value. A length-ℓ bit-prefix of a character are the its ℓ MSBs.

A wavelet tree [17] is a binary tree, where each node represents a subsequence of
the text. Each node contains character with a specific length-k bit-prefix. The root
of a wavelet tree represents all characters with the length-0 bit empty prefix, i.e., all
characters. Then, whenever we visit a left child of a node that represents characters
with bit-prefix α, the child represents character with-bit prefix α0. The right child
represents characters with bit-prefix α1. On the ℓ-th level of the tree (the root has
level 1), characters are represented by their ℓ-th MSB. Within a node, all represented
characters are stored in a bit vector. If we concatenate the bit vectors of all nodes on
the same level, we obtain a level-wise wavelet tree. We say that all characters that have
been represented in a node of a non-level-wise wavelet tree are in the same interval.
See Figure 1 for an example. In the following, we consider a level-wise wavelet trees.

The wavelet matrix [7] is an alternative representation of the wavelet tree. The
first level of the wavelet matrix are the MSBs of the characters, the same as the first
level of the wavelet tree. Then, to compute the next level ℓ, starting with the second,
the text is stably sorted using the (ℓ − 1)-th MSB as key. Just as with the wavelet
tree, the characters are represented using their ℓ-th MSB on each level ℓ. The order of
the characters on each level is given by the stably sorted text. Sorting the text looses
the tree structure of the wavelet tree. However, the same intervals as in the wavelet
tree occur on each level, just in a bit-reversal permutation1 order. A comparison of the
structure of a wavelet tree and a wavelet matrix can be found in Figure 1. The number
of zero in each level is stored in the array Z, which are needed to answer queries using
one less binary rank and/or select query per level compared to wavelet trees. In the
following, we use wavelet tree to refer to both wavelet tree and wavelet matrix.

1See https://oeis.org/A030109, last accessed 2023-11-08.

https://oeis.org/A030109

Related Work. Practical and well-performing implementations of rank and select
structures can be found in the SDSL [15]. The currently most space efficient rank and
select support for a size-u bit vector that contains n ones requires only log

(
u
n

)
+ u

log u
+

Õ(u
3
4) bits (including the bit vector) [27]. In practice, the currently fastest select data

structures are by Vigna [32]. However, they still require much more space than the
currently most space-efficient data structures [21, 33].

Let T be a text of length n over an alphabet of size σ. The best sequential wavelet
tree construction algorithms require O(n log σ/

√
log n) time [1, 24]. These approaches

make use of vectorized instructions. There also exist implementations that make use
of these instructions which are available in modern CPUs [9, 20] and are reported
to be the fastest in practice. In shared memory, wavelet trees can be computed in
O(σ + log n) time requiring only O(n log σ/

√
log n) work [31]. In practice, the fastest

construction algorithms are based on domain decomposition [22, 13] and utilize a
bottom-up construction as sequential base-case [8]. To compress a wavelet tree, it is
constructed for the Huffman-compressed text. The bit vectors in the Huffman-shaped
wavelet tree requires n⌈H0(T)⌉ bits of space, where H0 is the zeroth order entropy of
the text. A fully functional Huffman-shaped wavelet tree (n⌈H0(T)⌉(1 + o(1) bits of
space. In theoretical work, multi-ary wavelet trees have been considered before with
the main goal to reduce query time in the RAM model to Θ(loglogn σ) [11].

Recently, a practical block tree implementation has been introduced [2]. A block
tree is especially useful for highly compressible text, as they require only O(z log(n/z))
words space, where z is the number of Lempel-Ziv factors of the text. Further
dictionary-compressed representations allow for rank and select support in optimal time
in compressed space [29] with respect to the size of a string attractor [30] of the text.
For a grammar of size g and an alphabet of size σ, rank and select support requires
O(σg) space [3, 28]. Here, queries can be answered in O(log n) time.

2 4-Ary Wavelet Trees and Quad Vectors

When answering queries using a wavelet tree in practice, the query is translated to
O(log σ) binary rank and select queries. On each level of the wavelet tree, the binary
rank and select queries will result in at least one cache miss, which is where most of
the time for answering a binary rank or select query is used for. To reduce the number
of cache misses, we have to reduce the number of levels. To this end, we make use
of 4-ary wavelet trees. By doubling the number of children, we (roughly) halve the
number of levels. If ⌈log σ⌉ is odd, the 4-ary wavelet tree has ⌈⌈log σ⌉/2⌉ levels.

In a 4-ary wavelet tree, we represent the characters on each level using two bits
that we store in a quad vector, i.e., a vector over the alphabet {0, 1, 2, 3} with access,
rank, and select support. If ⌈log σ⌉ is odd, characters on the last level are represented
using a single bit in a bit vector. In the first level, each character is now represented
by its two MSBs and all characters share a length-0 bit-prefix. When visiting the first
child of a node that represents characters with bit prefix α, its four children represents
characters with bit-prefix α00, α01, α10, and α11 . Similarly to the binary case, there
exist 4-ary wavelet matrices.

1 Function Rankα(i)
2 r0 = i, b0 = 0
3 for k = 1, . . . , ℓ+ 1 do
4 αk = (α >> 2 ∗ (ℓ− 1− k)) & 3, offset = Ck[αk]
5 bk = Q[k].rankαk

(bk−1) + offset

6 rk = Q[k].rankαk
(rk−1) + offset

7 return rℓ − bℓ

Algorithm 3.1. Rank query for a 4-ry wavelet matrix with ℓ levels. For level k,
Q[k] is the quad vector and Ck[αk] is the number of character < αk on level k.

At the heart of our 4-ary wavelet trees is a space-efficient and fast rank and select
data structure for quad vectors. Our data structure uses a block-based design and
follows the popular memory layout for block-based rank and select data structures
for bit vectors [21, 33] adapted to quad vectors. In a block-based design, the number
of occurrences of different symbols is stored for blocks of different size. The number
is stored either for the whole input up to the block or for the input contained in a
bigger block. For our quad vector, we store the following information for each symbol
α ∈ {00, 01, 10, 11}: Superblocks cover 4096 (or 2048) symbols and store the number
of occurrences before the start of the super block. Blocks cover 512 (or 256) symbols
and store the number of occurrences before the start of the block within the super
block. The smaller size (super)blocks result in double the space-overhead but halve
the cache misses, as the pertinent information fits into one cache line. Due to the page
limit and this being a minor part of this paper based on [21, 33], we do not go into full
detail here, as details are not required to understand the remaining part of the paper.
We refer to the full paper [5] for a more detailed description.

3 Faster Rank Queries with Prefetching

Modern CPUs can issue multiple memory requests concurrently, paving the way for
proactive prefetching of cache lines predicted to be accessed in the near future. By
issuing the memory requests for the accessed cache line and the anticipated ones
simultaneously, prefecthing helps hiding memory latency and reducing the impact of
memory access delays on the CPU’s execution pipeline.

Prefetching manifests in two forms: hardware and software prefetching. Hardware
prefetching is implemented within the CPU’s microarchitecture and is driven by the
hardware itself. Software prefetching, instead, is controlled by the programmer or the
compiler through explicit instructions. However, it requires a deep understanding of
the algorithm’s memory access patterns and the underlying memory hierarchy, because
incorrect or excessive prefetching can lead to performance degradation.

The goal of this section is to show how to introduce software prefetching in the
algorithm of the rank query. For the following discussion, we give the pseudo code
for rankα(i) query on a 4-ry wavelet matrix in Algorithm 3.1. A rankα(i) query on
a wavelet tree has to traverse each of the ℓ = ⌈⌈log σ⌉/2⌉ levels. At each level k, we

perform two rank queries on the quad vectors of that level for the character αk ∈ [0, 3]
to compute bk and rk. These two rank queries use the results bk−1 and rk−1 of the two
rank queries computed at the previous level. Every rank query in a quad vector for a
given position i needs to access only two cache lines: the one containing counters for
the superblock and block of that position, and the one containing the i-th character.
These two cache lines can be requested in parallel as they only depend on position i.

3.1 Predicting Cache Lines in a Quad Vector

This challenge led us to the definition of the Rank with Additive Approximation problem
and our predictive model will take the form of a lightweight data structure.

Definition 3.1. Given a quaternary vector Q[1, n] and fixed an additive error ϵ, the
goal is to build a data structure to answer additive approximated rank queries. Given
a position i and a symbol α ∈ [0, 3], rank≈

α (i) approximates the correct rank query by
returning any arbitrary value r̃ within [r, r + ϵ], where r = rankα(i).

A prediction model that correctly predicts the needed cache lines of a certain level,
is actually solving the Rank with Additive Approximation problem on the quad vector
of the previous level with ϵ equal to the cache line size and vice versa.

Lemma 3.1. Any data structure that solves the Rank with Additive Approximation
problem on Q[1, n] with additive error ϵ needs at least Ω(n/ϵ) bits of space.

Proof. Assume by contradiction that there exists a solution for the problem that uses
o(n/ϵ) bits of space for any quad vector of length n. Then, we could use this data
structure to represent any quad vector with less than 2n bits, which is impossible
because of an information-theoretical lower bound.

Given any Q[1, n], we obtain its expanded version of Q̂[1, 3ϵn] by replacing each
character with a run of 3ϵ of its copies. We use the above data structure to index Q̂
using o(n) bits of space. Now, we reconstruct Q by querying the data structure for
any character at the beginning and the end of each run. The correct character in Q
can be identified because the results of the two queries differ by at least 2ϵ, while the
results for the other characters differ by at most ϵ.

Lemma 3.2. There is a data structure with constant query time requiring Θ(n/ϵ) bits,
i.e., matching the space lower bound, for the Rank with Additive Approximation problem
on Q[1, n] with additive error ϵ.

Proof. The idea is to use a bit vector Bα[1, ⌈2n/ϵ⌉], for each of the character α ∈ [0, 3].
We split Q[1, n] into blocks of size ϵ/2. The ith bit in Bα is set to 1 if and only if the
ith block of Q contains the jth of α, for some j which is a multiple of ϵ/2.

We add the required extra data structure to support rank queries on the bit vector
Bα. A query rank≈

α (i) is solved as follows. Let j = ⌊2i/ϵ⌋ be the block in Q that
contains our target position i. We compute k = rank1(j − 1) on the bit vector Bα.
This way, we know that the number of occurrences in Q up to position i is at least
r · ϵ/2. Moreover, the exact number of occurrences of α up to the block j is at most
k · ϵ/2 + ϵ/2− 1. As the jth block as size ϵ/2, we conclude that returning r̃ = k · ϵ/2
gives the required estimate.

3.2 Predicting Cache Lines in a Wavelet Tree

Let us consider the rank query rankα(i). Consider the rank query rankα(i). For
addressing this query through a 4-ary wavelet tree, we divide the character α into its
quaternary components α1, α2, . . . , αℓ. Then, at level k, we compute rk = rankαk(rk −
1). See Algorithm 3.1. As we mentioned above we focus on prefetching for rks (line 5),
as we can deal with bks in a similar way. The prefetching is possible if can approximate
each rk with r̃k, such that r̃k ∈ [rk, rk + ϵ] with ϵ = 256. Indeed, each cache line has
size 512 bits and, thus, spans 256 positions of the quad vector at level k. The value
r̃k introduces uncertainty only within the span of two consecutive cache lines. Note
that prefetching is effective only if we compute the approximated ranks r̃k for all the
levels. This way we issue the requests for all the required cache lines in parallel before
starting to use these cache lines to compute the exact ranks rk.

Unfortunately, solving the Rank with Additive Approximation problem with error ϵ
for the quad vector at each level of the wavelet tree is not enough to guarantee that r̃k is
at most at distance ϵ from rk (i.e., r̃k ∈ [rk, rk + ϵ]), for all the levels k. This is because
the value r̃k is computed with an approximated rank at position r̃k−1 because the exact
position rk−1 is unknown, i.e., we can compute rank≈

αk
(r̃k−1) and not rank≈

αk
(rk−1).

As the position r̃k−1 is already affected by some error, the errors of our approximations
sum up level by level. Thus, at level k the error could be up to (k − 1)ϵ.

We can solve this issue by correcting the approximations at each level. This
approach is inspired by a solution for the substring occurrence estimation on texts with
compressed indexes [26]. The main idea is to refine the estimates at each level k with
a correction term ∆. To compute ∆ we need to store a set of discriminant positions
Dk,α for each character α ∈ [0, 3] at level k.

In the solution of Theorem 3.2 we store a bit vector Bα for each character α ∈ [0, 3].
A bit was set to one for each position corresponding to an occurrence of α which is a
multiple of ϵ. The set Dk,α consists of the position in the quad vector corresponding to
those occurrences. The positions in these sets can be stored within Θ(log ϵ) bits per
position, e.g., by associating each position with its corresponding bit set to one in Bα

and store its offset within the corresponding block.
At query time, given rk−1 and the character αk, we want to compute the discriminant

position dk−1 which is the successor of rk−1 in the set Dk,αk
. This discriminant position

can be computed in constant time with a rank and a select query on the bit vector of
α. Once we computed dk−1, the correction term ∆ is min(dk−1 − r̃k−1, ϵ− 1) and the
approximated rank is computed as r̃k = rankαk

(dk−1)−∆. This correction is enough
to guarantee that our approximations always remain at a distance at most ϵ from the
correct ones over all the levels k of the wavelet tree.

Lemma 3.3. At any level k, we have r̃k ∈ [rk, rk + ϵ).

Proof. The proof is by induction on k. For the first level k = 1, as at the beginning
r̃0 = r0, we have r1 ∈ [r1, r1 + ϵ) by Theorem 3.2. For general k, we assume that
r̃k−1 ∈ [rk−1, rk−1 + ϵ), and we prove r̃k ∈ [rk, rk + ϵ). We want to prove that r̃k ≤ rk
and rk − r̃k ≤ ϵ. There are two cases based on the relationship between dk−1 and rk−1.
By definition we know that r̃k−1 ≤ dk−1 and by inductive hyphotesis r̃k−1 ≤ rk−1.

The first case is rk−1 ≤ dk−1. Thus, we have r̃k−1 ≤ rk−1 ≤ dk−1. Let z be the
number of occurrences of the ranked character αk in the interval [rk−1, dk−1]. Now, we
have rk−r̃k = rankαk

(rk−1)−rank≈
αk
(r̃k−1) = rankαk

(dk−1)−z−(rankαk
(dk−1)−∆) =

∆− z ≤ ϵ. The last inequality follows by [rk−1, dk−1] being contained in [r̃k−1, dk−1],
bounding z by the minimum of the length of [r̃k−1, dk−1] and ϵ− 1. If the interval is
larger than ϵ−1, there cannot be more than ϵ−1 of αk since we sampled a discriminant
position every ϵ occurrences of αk. It also follows that z ≤ ∆ and, thus, r̃k ≤ rk.

The second case is dk−1 < rk−1. Thus, r̃k−1 ≤ dk−1 ≤ rk−1. Let z be the number of
occurrences of αk in the interval [rk−1, dk−1]. Now, we have rk − r̃k = rankαk

(rk−1)−
rank≈

αk
(r̃k−1) = rankαk

(dk−1) + z − (rankαk
(dk−1) −∆) = z + ∆ ≤ rk−1 − r̃k−1 ≤ ϵ.

The first inequality follows by observing that ∆ is at most the distance between r̃k−1

and dk−1 and z is at most the distance between dk−1 and rk−1. So, their sum is at most
rk−1 − r̃k−1. The last inequality is by inductive hypothesis.

The space required by this predicting data structure is Θ((n/ϵ) log ϵ) for each level
of the wavelet tree. So, the overall space usage is Θ((n log σ/ϵ) log ϵ) bits. As we
mentioned above, prefetching with the above data structure can be done by setting
ϵ = 256. However, we are left with an issue. If the indexed sequence is too large, the
predicting data structure itself does not fit in the cache and, thus, to avoid cache misses
in the wavelet tree we would pay cache misses in the predicting data structure. This
issue could be solved by introducing a hierarchy of predictors in which a predictor at a
specific level takes on the responsibility of prefetching the necessary cache lines for the
subsequent-level predictor. Each predictor allows an error that is roughly ϵ times less
than the one at the next level, until the predictor at the head of the hierarchy fits in
cache. Unfortunately, a larger hierarchy becomes impractical quite soon for two reasons.
First, to fully exploit prefetching we would have to request all the predicted cache lines
in parallel, and current CPUs can issue only 5–10 memory requests in parallel. Second,
each level of the hierarchy introduces a cost of Θ(log σ) to the query.

Practical Implementations. In our implementation, we relaxed the previous solu-
tion in several respects. First, we do not use the correcting term ∆ and the discriminant
positions. This is because in our tests we used sequences with an alphabet size σ up to
256, which requires a wavelet tree of at most 4 levels. Thus, the error growth here is
very limited and it can be afforded by prefetching more cache lines. Second, we limit
the hierarchy to just two levels of predictors. The first one implements the solution of
Theorem 3.2 with error ϵ = 2048. For the second level, we observe that super block
and block counters can be used as a variant of the solution of Theorem 3.2 with error
ϵ = 256. This way, we can use the first level to predict the super block containing rk
for each level and prefetch the cache lines containing the counters of those super blocks
and their blocks. Then, we use these counters to refine the predictions to prefetch the
cache lines with the correct blocks of data in the quad vectors. Cache lines needed by
access and select queries cannot be predicted with our solution, as for each level there
is a double dependency (position and symbol) on the result of the previous level.

Table 1: Latency of access, rank, and select queries (row 1–3) given in µs and the space
(row 4) is given in GiB. The small number in parentheses is the speedup of QWMpfs

256

over the method represented by the column. All results for 8GiB input files.

input sdsl wm sdsl fbb pasta wm sucds QWMpfs
256

ac
ce
ss

English 1270 (1.7×) 1506 (2.1×) 1618 (2.2×) 1122 (1.5×) 731 (1.0×)

CC 1185 (1.7×) 1897 (2.7×) 1511 (2.2×) 1210 (1.7×) 700 (1.0×)

DNA 239 (1.5×) 665 (4.2×) 353 (2.2×) 316 (2.0×) 157 (1.0×)

Wiki 1216 (1.7×) 1712 (2.4×) 1681 (2.4×) 1198 (1.7×) 712 (1.0×)

ra
n
k

English 1498 (3.2×) 1474 (3.1×) 1797 (3.8×) 1408 (3.0×) 472 (1.0×)

CC 1350 (2.8×) 1913 (3.9×) 1725 (3.5×) 1424 (2.9×) 490 (1.0×)

DNA 321 (1.8×) 665 (3.8×) 394 (2.2×) 503 (2.9×) 176 (1.0×)

Wiki 1402 (2.9×) 1649 (3.4×) 1855 (3.8×) 1442 (3.0×) 488 (1.0×)

se
le
ct

English 4849 (2.2×) — — 4882 (2.2×) 4245 (1.9×) 2229 (1.0×)

CC 4483 (2.0×) — — 4646 (2.1×) 4396 (1.9×) 2260 (1.0×)

DNA 1032 (2.0×) — — 910 (1.7×) 1440 (2.8×) 521 (1.0×)

Wiki 4546 (2.1×) — — 4956 (2.3×) 4349 (2.0×) 2185 (1.0×)

sp
ac
e

English 11.9 5.0 8.0 10.5 9.0
CC 11.9 5.8 8.0 10.5 9.0
DNA 3.0 2.2 2.0 3.9 2.3
Wiki 11.9 5.8 8.0 10.5 9.0

4 Experimental Evaluation

For our experiments, we used a machine equipped with two AMD EPYC 7713 and 2TB
DDR4 RAM running Ubuntu 20.04.3 LTS kernel version 5.4.0-155. All experiments were
performed using a single thread, with hyperthreading and turbo boost disabled. C++
code of competitors was compiled with GCC 11.1.0 with flags 03 and march=native and
Rust code was compiled using cargo build --release. Our Rust implementation is
available at https://github.com/rossanoventurini/qwt. We ran each experiment
ten times (10M queries for each run) and report the average running time.

Note that we compare wavelet matrices if available, as those are faster in practice
than wavelet trees. In the following, sdsl wm denotes wavelet matrices built on bit
vectors of the SDSL library (wm int) [15]. We also included the fastest compressed
wavelet tree implementation in the SDSL—sdsl fbb [16]. A wavelet matrix implementa-
tion built on bit vectors of the PASTA-toolbox library, using the most space-efficient
rank and select data structures [21], is denoted by pasta wm. Additionally, sucds is the
wavelet matrix implementation in the sucds library2. QWM256 and QWM512 are our
implementations of wavelet matrices built on quad vectors with blocks of size 256 and
512 symbols per block, cf. Section 2. QWMpfs denotes the usage of our predictive model
(see Section 3). We wanted to include a wavelet matrix based on learned compressed

2https://github.com/kampersanda/sucds, last accessed 2023-11-08.

https://github.com/rossanoventurini/qwt
https://github.com/kampersanda/sucds

rank and select data structures [4], however, the experiments for inputs > 1GiB did
not finish in reasonable time.

As inputs, we use text prefixes between 16KiB and 8GiB in size, generated from
the following datasets. English is the concatenation of all 35 750 English text files from
the Gutenberg Project without project related headers. DNA are FASTQ files from the
1000 Genomes Project, where we considered only the raw sequence and kept only the
character A, C, G, and T. CC is a concatenation of the WET files of Common Crawl
corpus, without project related headers. Wiki is a concatenation of XML data of the
English Wikipedia from June 2023.

Experimental Results. Due to space constraints, we mainly consider the latency of
access, rank, and select by forcing the input of each query to depend on the output of
the previous one. This is consistent with the in real settings, e.g., the backwards search.
For a very thorough evaluation, we refer to the full paper [5], where we also give the
throughput and show results for different input sizes. Additionally, we only consider
QWMpfs

256 here, as this version is the overall fastest. For a comparison of different block
sizes (with and without predictive model, please see the full paper).

We report a summary of our experimental results for inputs of size 8GiB in Table 1.
There, we can see that our new wavelet tree is always the fastest. For access and
select queries, we achieve a speedup of 1.5–2.2 compared to sdsl wm, the second fastest
wavelet tree. When using our predictive model for rank queries, wie can improve this
speedup up to 3.2. For small alphabets, e.g., DNA, the predictive model provides no
advantage, as there is only one level in our 4-ary wavelet tree. The reported speedups
are in line with other implementations, e.g., sucds, which provides slightly slower rank
queries than sdsl wm.

The space requirements of all wavelet trees are also unsurprising. The compressed
wavelet tree sdsl fbb requires the least space, the space efficient implementation
pasta wm requires just a little bit more than the input size, and our new solution is
also very space efficient. Both, sdsl wm and sucds require slightly more space due to
the underlying rank and select data structures.

Overall, our new wavelet tree provides impressive speedups compared to all other
available wavelet tree implementations. It is also very space-efficient, i.e., only com-
pressed wavelet trees require significantly less space. In the future, we want to integrate
our predictive model in compressed wavelet trees.

[1] M. A. Babenko, P. Gawrychowski, T. Kociumaka, and T. Starikovskaya. Wavelet trees
meet suffix trees. In SODA, 2015.

[2] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen, G. Navarro,
A. Ordóñez Pereira, S. J. Puglisi, and Y. Tabei. Block trees. J. Comput. Syst. Sci.,
117:1–22, 2021.

[3] D. Belazzougui, P. H. Cording, S. J. Puglisi, and Y. Tabei. Access, rank, and select in
grammar-compressed strings. In ESA, 2015.

[4] A. Boffa, P. Ferragina, and G. Vinciguerra. A learned approach to design compressed
rank/select data structures. ACM Trans. Algorithms, 2022.

[5] M. Ceregini, F. Kurpicz, and R. Venturini. Faster wavelet trees with quad vectors.
CoRR, abs/2302.09239, 2023.

[6] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage (extended
abstract). In SODA, 1996.

[7] F. Claude, G. Navarro, and A. Ordóñez Pereira. The wavelet matrix: An efficient
wavelet tree for large alphabets. Inf. Syst., 47:15–32, 2015.

[8] P. Dinklage, Jonas Ellert, J. Fischer, F. Kurpicz, and M. Löbel. Practical wavelet tree
construction. ACM J. Exp. Algorithmics, 26:1.8:1–1.8:67, 2021.

[9] P. Dinklage, J. Fischer, F. Kurpicz, and J. Tarnowski. Bit-parallel (compressed) wavelet
tree construction. In DCC, 2023.

[10] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
FOCS, 2000.

[11] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Trans. Algorithms, 3(2):20, 2007.

[12] P. Ferragina, R.Giancarlo, and G. Manzini. The myriad virtues of wavelet trees. Inf.
Comput., 207(8):849–866, 2009.

[13] J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, and D. Seco. Parallel construction of
wavelet trees on multicore architectures. Knowl. Inf. Syst., 51(3):1043–1066, 2017.

[14] T. Gagie, G. Navarro, and N. Prezza. Fully functional suffix trees and optimal text
searching in bwt-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020.

[15] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play
with succinct data structures. In SEA, 2014.

[16] S. Gog, J. Kärkkäinen, D. Kempa, M. Petri, and S. J. Puglisi. Fixed block compression
boosting in fm-indexes: Theory and practice. Algorithmica, 81(4):1370–1391, 2019.

[17] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In
SODA, 2003.

[18] R. Grossi, J. S. Vitter, and Bojian Xu. Wavelet trees: From theory to practice. In
CCP, 2011.

[19] G. Jacobson. Space-efficient static trees and graphs. In FOCS, 1989.
[20] Y. Kaneta. Fast wavelet tree construction in practice. In SPIRE, 2018.
[21] F. Kurpicz. Engineering compact data structures for rank and select queries on bit

vectors. In SPIRE, 2022.
[22] J. Labeit, J. Shun, and G. E. Blelloch. Parallel lightweight wavelet tree, suffix array

and fm-index construction. J. Discrete Algorithms, 43:2–17, 2017.
[23] C. Makris. Wavelet trees: A survey. Comput. Sci. Inf. Syst., 9(2):585–625, 2012.
[24] J. I. Munro, Y. Nekrich, and J. S. Vitter. Fast construction of wavelet trees. Theor.

Comput. Sci., 638:91–97, 2016.
[25] G. Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20, 2014.
[26] A. Orlandi and R. Venturini. Space-efficient substring occurrence estimation. Algorith-

mica, 74(1):65–90, 2016.
[27] M. Patrascu. Succincter. In FOCS, 2008.
[28] A. Ordóñez Pereira, G. Navarro, and N. R. Brisaboa. Grammar compressed sequences

with rank/select support. J. Discrete Algorithms, 43:54–71, 2017.
[29] N. Prezza. Optimal rank and select queries on dictionary-compressed text. In CPM,

2019.
[30] Nicola Prezza. On string attractors. In ICTCS, 2018.
[31] J. Shun. Improved parallel construction of wavelet trees and rank/select structures. Inf.

Comput., 273:104516, 2020.
[32] S. Vigna. Broadword implementation of rank/select queries. In WEA, 2008.
[33] D. Zhou, D. G. Andersen, and M. Kaminsky. Space-efficient, high-performance rank

and select structures on uncompressed bit sequences. In SEA, 2013.

	Introduction
	4-Ary Wavelet Trees and Quad Vectors
	Faster Rank Queries with Prefetching
	Predicting Cache Lines in a Quad Vector
	Predicting Cache Lines in a Wavelet Tree

	Experimental Evaluation

