
Practical Performance of Space Efficient Data
Structures for Longest Common Extensions
Patrick Dinklage
Department of Computer Science, Technical University of Dortmund, Dortmund, Germany
patrick.dinklage@tu-dortmund.de

Johannes Fischer
Department of Computer Science, Technical University of Dortmund, Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

Alexander Herlez
Department of Computer Science, Technical University of Dortmund, Dortmund, Germany
alexander.herlez@tu-dortmund.de

Tomasz Kociumaka
Department of Computer Science, Bar Ilan Unviersity, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Florian Kurpicz
Department of Computer Science, Technical University of Dortmund, Dortmund, Germany
florian.kurpicz@tu-dortmund.de

Abstract
For a text T [1, n], a Longest Common Extension (LCE) query lceT (i, j) asks for the length of
the longest common prefix of the suffixes T [i, n] and T [j, n] identified by their starting positions
1 ≤ i, j ≤ n. A classic problem in stringology asks to preprocess a static text T [1, n] over an alphabet
of size σ so that LCE queries can be efficiently answered on-line. Since its introduction in the
1980’s, this problem has found numerous applications: in suffix sorting, edit distance computation,
approximate pattern matching, regularities finding, string mining, and many more. Text-book
solutions offer O(n) preprocessing time and O(1) query time, but they employ memory-heavy data
structures, such as suffix arrays, in practice several times bigger than the text itself.

Very recently, more space efficient solutions using O(n log σ) bits of total space or even only
O(logn) bits of extra space have been proposed: string synchronizing sets [Kempa and Kociumaka,
STOC’19, and Birenzwige et al., SODA’20] and in-place fingerprinting [Prezza, SODA’18]. The goal
of this article is to present well-engineered implementations of these new solutions and study their
practicality on a commonly agreed text corpus. We show that both perform extremely well in practice,
with space consumption of only around 10% of the input size for string synchronizing sets (around
20% for highly repetitive texts), and essentially no extra space for fingerprinting. Interestingly,
our experiments also show that both solutions become much faster than naive scanning even for
finding common prefixes of moderate length, contradicting a common belief that sophisticated data
structures for LCE queries are not competitive with naive approaches [Ilie and Tinta, SPIRE’09].
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68:2 Practical performance of data structures for LCE queries

1 Introduction and Related Work

The longest common extension (LCE) problem is formally defined as follows:

Given: A text T [1, n] with n symbols from an alphabet of size σ.
Construct: A data structure that allows subsequent on-line queries of the form

lceT (i, j) := max{` ≥ 0 : T [i, i+ `) = T [j, j + `)}.

This is a fundamental problem in stringology, with numerous applications in (sparse) suffix
sorting [12,19,24], edit distance computation [35,37], approximate pattern matching [2,22,36],
regularities finding [4, 5, 13], string mining [21], and many more. The problem has a classic
solution with O(1)-time queries based either on the suffix tree of T combined with lowest
common ancestor queries [15,26,37], or using the inverse suffix array of T and the longest
common prefix array with a data structure for range minimum queries [18,30]. The latter
variant is more space efficient in practice but still several times larger than the text itself.

Recently, two notable methods appeared that also partly address the LCE problem:
Prezza’s in-place fingerprinting data structure [44] using a clever replacement of the original
text by well-chosen Karp–Rabin fingerprints [31], and data structures relying on local
consistency techniques [33,39,46] to construct so-called string synchronizing sets (SSS) [12,32].

Although the LCE problem is also of high practical importance, we are only aware of
a few experimental papers on the LCE problem [18, 29]. However, these studies are now
somewhat dated, and naturally none of them includes the recent theoretical advances on the
problem. As a result, practitioners (e.g., in bioinformatics) still use those old (slow and/or
memory-heavy) data structures (see, e.g., [43, 45, 47, 50]), thereby limiting themselves to
problem sizes much smaller than they could actually handle.

Our Contributions and Outline. The goal of this paper is to engineer and evaluate LCE
data structures based on the recent theoretical advances in this field [12, 32, 44]: in-place
fingerprinting and string synchronizing sets. We first describe the theory behind these
two approaches in Sect. 3, after having introduced some general background in Sect. 2.
Sect. 4 describes further details of the implementations, including a simple but practical
data structure for the well-known predecessor/successor queries [49]. Finally, in Sect. 5, we
evaluate our implementations on a well-established benchmarking set, showing that (1) our
implementations based on SSS are always among the fastest to answer queries and (2) in-place
fingerprinting is very fast in practice and useful to answer queries that have long results.

Further Related Work. Compressed suffix trees with LCA functionality [20] can also be
used for LCE queries, but they are certainly too powerful (and hence too space consuming)
for the singular problem considered in this paper; this is confirmed experimentally in Sect. 5.

Time-space tradeoffs for LCE queries were considered by many authors [7,9,10,12,24,48].
Kosolobov [34] showed that the product of extra space (in bits) and LCE query time must
be at least Ω(n logn) under certain assumptions. Furthermore, there are data structures for
LCE queries in compressed [6, 8, 27,28,42,48] and dynamic texts [1, 23,39,42].

2 Preliminaries

2.1 Karp–Rabin Fingerprints
The goal of Karp–Rabin fingerprints [31] is to hash substrings to small integers in order to
achieve fast comparisons for equality. To construct Karp–Rabin fingerprints, we choose a
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random prime number q = Θ(nc) for some constant c > 1. The Karp–Rabin fingerprint
φ(x, y) of the substring T [x, y] is then defined as

φ(x, y) =
(

y∑
z=x

T [z] · σy−z
)

mod q . (1)

Observe that the Karp–Rabin fingerprints of matching substrings are equal, i.e., for every
integer ` ≥ 0, if T [x, x+ `] = T [y, y + `], then φ(x, x+ `) = φ(y, y + `). On the other hand,
if two substrings do not match, their fingerprints will be different with high probability.
Specifically, if T [x, x+ `] 6= T [y, y+ `], then Prob[φ(x, x+ `) = φ(y, y+ `)] = O

(
` logσ
nc

)
. Thus,

by choosing large enough constant c > 1, we can control the probability of false positives
when comparing fingerprints instead of the underlying substrings.

2.2 Static Successor Data Structures
Let U be a universe of u subsequent integers and let S[0, n− 1] be a sequence of n integers
from U sorted in ascending order. For any x ∈ U , we call succS(x) := min{y ∈ S | y ≥ x}
the successor of x in S, i.e., the smallest value in S larger than or equal to x. Without loss
of generality, we assume that x > S[0] (otherwise, its successor is S[0]) and x ≤ S[n − 1]
(otherwise, it has no successor). Furthermore, in the following, we are interested only in the
position i of the successor such that S[i] = succS(x).

The most straightforward ways to find succS(x) are by doing a linear search in time
O(n) or, since S is sorted, by doing a binary search in time O(logn). Both require O(logn)
bits of extra space for keeping track of the current position or the search interval and pivot,
respectively. Alternatively, we can construct a bit vector BS of size u′ = S[n− 1]− S[0] + 1
bits, in which we set BS [x − S[0]] := 1 if and only if x ∈ S. Enhancing BS to support
constant-time rank queries (see [41, p. 75]) then allows for constant-time successor queries,
because succS(x) = rank1(BS , x − S[0]). However, this method requires u′ + o(u′) bits of
memory and only works for static sets. Matsuoka et al. [38, Corollary 1] showed how to
achieve the same space bounds in a dynamic setting, raising the query time to O(log log u).

One can also interpret the numbers from S as binary strings and store them in a trie;
some nodes of that trie can then be sampled to speed up the successor search. Such
universe-based sampling has already been used in the van Emde Boas tree [49], which answers
successor queries in time O(log log u) and requires O(n log u) bits of memory using hashing.
Dementiev et al. [14] described a careful implementation of this idea for 32-bit universes,
called STree. However, the STree is designed for dynamic sequences and contains components
to support insertion and deletion into the set, which are not needed in the static case.

3 LCE Data Structures

3.1 In-Place Fingerprinting
Prezza [44] showed how to store the Karp–Rabin fingerprints from Sect. 2.1 succinctly so
that the fingerprints replace the original text characters, but the original characters can still
be recovered.

To facilitate explanation, let us assume a byte-alphabet (σ = 256) and a computer with
word size w := 64 bits. We group characters from T into blocks of size τ := Θ(w/ log σ);
in our case, τ = 8. Call the resulting array B[1, n/τ ], with B[i] := T [(i − 1)τ + 1, iτ ]
for all i = 1, . . . , n/τ (assume for simplicity that τ divides n). Note that τ characters fit

ESA 2020



68:4 Practical performance of data structures for LCE queries

into a computer word, and can hence be transferred to/from memory and arithmetically
manipulated in constant time. We also choose a random prime q such that 1

2σ
τ ≤ q < στ .

We then compute the fingerprints φ(1, iτ) for all i = 1, . . . , n/τ . (The original description
actually computes the values (φ(1, iτ) + s̄) mod q, where 0 ≤ s̄ < q is a random seed, which
we omit in the following.) Since D[i] := bB[i]/qc ∈ {0, 1}, all we need to recover the full
contents of block B[i] are the two fingerprints φ(1, (i− 1)τ) and φ(1, iτ), and the value D[i].
Prezza then shows how to choose q such that w.h.p. the fingerprints φ(1, iτ) all have their
most significant bit (MSB) set to 0; thus, the array D can be stored instead of those MSBs.
(If this doesn’t hold, one can recompute the data structure with a different value of q until it
holds.) This also allows us to compute the fingerprints for arbitrary substrings of T (not
necessarily aligned with the block boundaries), also in O(1) time. Prezza shows that with the
above choices of q and τ , the fingerprints are collision free with high probability 1− n−Ω(1).

The advantage of replacing the original text characters with fingerprints is that arbitrarily
long substrings of the text can be tested for equality in constant time, using the fingerprints
of those substrings. This can be applied for longest common extension queries as follows:
To compute ` := lceT (i, j) for any 1 ≤ i, j ≤ n, we do an exponential search by comparing
φ(i, i+ 2k) with φ(j, j + 2k) for increasing exponents k until the fingerprints mismatch; the
actual position of the first mismatch between T [i, n] and T [j, n] is then found by a further
binary search on an interval of size O(`). The whole process takes O(log `) time, assuming
that we have access to a precomputed table of all necessary powers of σ modulo q, which
adds another O(w logn) bits of space (negligible in practice).

3.2 String Synchronizing Sets
The idea behind a string synchronizing set (SSS for short) is to designate a (hopefully small)
set of positions from T such that this choice of positions is locally consistent, meaning that
in sufficiently long matching substrings of T , the chosen positions are the same (relative to
the beginnings of these substrings). We use the following simplified definition of SSS that is
sufficient for our purposes:

I Definition 1. For a positive integer τ ≤ n/2, the τ -synchronizing set of T is defined as

S = {i ∈ [1, n−2τ+1] : min{φ(j, j+τ−1) : j ∈ [i, i+τ ]} ∈ {φ(i, i+τ−1), φ(i+τ, i+2τ−1)}}.

The τ -synchronizing set satisfies the following consistency property: for all i, j ∈ [1, n−2τ+1],
if T [i, i+ 2τ − 1] = T [j, j + 2τ − 1], then i ∈ S ⇐⇒ j ∈ S. The original definition [32] also
includes a density property that is necessary to guarantee a small SSS (of size O(n/τ)) even
for highly repetitive parts of T , which we do not consider in this paper, as it would make
the data structure and the query procedure significantly more complicated. (Omitting the
density property can only make our data structure larger, but it remains correct).

We can use SSS for LCE data structures as follows. We first build a successor data
structure on S. Let n′ := |S| denote the size of the SSS, and let s1 < s2 < · · · < sn′

denote the positions of S in increasing order. Define a new text T ′ of length n′ by setting
T ′[i] := T [si, si + 3τ − 1] for all 1 ≤ i ≤ n′. Then, build a data structure for constant-time
LCE queries on T ′, e.g., the RMQ-based solution mentioned in the introduction [18].

In order to answer an lceT (i, j) query for arbitrary 1 ≤ i, j ≤ n, first compare at most
3τ + 1 characters from T [i, i+ 3τ ] and T [j, j + 3τ ]. If this comparison yields a mismatch, we
are done. If not, compute si′ := succS(i), sj′ := succS(j), and `′ := lceT ′(i′, j′). Then,

lceT (i, j) = si′+`′ − i+ lceT (si′+`′ , sj′+`′) , (2)



P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 68:5

and the latter lceT value can again be computed naively as it is at most 3τ due to T ′[i′+`′] 6=
T ′[j′ + `′]. Overall, we get O(τ) query time. (The original description [32] sets τ = Θ(logσ n)
and uses the bit-vector approach from Sect. 2.2 for successor queries, as well as word-packing
and bit-fiddling techniques, to achieve O(1) query time, still in O(n log σ) bits of space.)

An advantage of this LCE data structure is that it naturally combines fast naive scanning
for small LCE values (up to 3τ) with more sophisticated data structures guaranteeing a
good worst-case performance. Taken together with the fact that the data structure is easily
tunable by adjusting τ , it is an excellent candidate for a practical LCE data structure.

4 Implementation

In this section, we describe our C++ implementations of the data structures from Sect. 3.
The code is optimized for byte-alphabets (σ = 256) and can handle texts of arbitrary length,
with the restriction for the algorithms described in Sect. 4.4 that the synchronizing set S
can contain at most |S| < 232 elements.

4.1 A Simple but Fast Static Successor Data Structure
We first describe our implementation of a fast practical data structure for successor queries
on a static sorted integer sequence S[0, n− 1] of length n over a universe U of size u = 2w.
To the best of our knowledge, there is no systematic study of such data structures. Our data
structure is a simple index that combines universe-based sampling, binary search, and linear
search to find the successor succS(x) for any given x ∈ U .

Let k < w be a trade-off parameter and let c be the number of elements from U that fit
into a cache line. We build an index P over S such that we can, in constant time, look up
an interval in S of length at most 2k + 1 in which succS(x) is guaranteed to be contained. In
this interval, we proceed with a binary search up to the point when the size of the current
search interval becomes at most c. In this final small interval, which fully fits into a cache
line, we look for succS(x) using linear search. This successor query takes O(k + c) time.

It remains to construct P . Let hik(x) = bx/2kc. We define an array IP of 2w−k = u/2k
intervals such that, for every non-negative integer q < u/2k, the entry IP [q] is defined as

[max{i ∈ [0, n− 1] : hik(S[i]) < q}+ 1, max{j ∈ [0, n− 2] : hik(S[j]) ≤ q}+ 1] .

If any maximum does not exist, we set the corresponding boundary to 0. As hik(s) ≤ u/2k
for each s ∈ S, the right boundary of the last interval is always n− 1. Informally, we split
the universe U into 2w−k intervals of size 2k, find the corresponding boundaries in S, and
store them in IP with the right boundary shifted forward by one. The successor of x is then
guaranteed to be contained in the interval IP [hik(x)] of S, which is of length at most 2k + 1.

Since, for 1 < q < u/2k, the right boundary of IP [q − 1] equals the left boundary of
IP [q], in our final index P , we only store the left boundaries and append n− 1 (the right
boundary of the last interval) at the end. Then, the interval of S in which the successor of
x is contained can be expressed as [P [hik(x)], P [hik(x) + 1]]. We can construct P in time
O(n+ u/2k) with one scan over S; observe that P takes (u/2k + 1)dlgne bits of space.

Note that the space requirement is not optimal in theory and very wasteful if u � n.
However, in our use case of τ -synchronizing sets, the universe is relatively small and gaps
between two subsequent integers in S are of length at most τ , making our index practical.

In a preliminary experiment, we looked for the best configuration of the parameter k for
our successor data structure. For this experiment, we constructed the string synchronizing
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Figure 1 Query throughput versus space usage for static successor data structures built on top
of string synchronizing sets with various values of τ , averaged over all texts in the corpus (Tbl. 1).

sets S for our input texts (see Tbl. 1) and compared the following successor data structures:
1. simple binary search (bs), 2. binary search that switches to linear search (bs*) for intervals
of length at most c, 3. the simple data structure from Sect. 2.2, using a bit vector supporting
constant-time rank queries, and 4. our index P for different parameters k (idx<k>).

We measured the memory consumption of the successor data structures and the median
query throughput for ten million successor queries over five iterations. The results in
Figure 1 indicate that k := 7 yields the most beneficial trade-off between query throughput
and memory consumption. Therefore, we used this configuration in further experiments.
Appendix A shows a detailed breakdown of the results for all input texts.

4.2 Naive LCE Queries
Let us now turn our attention to LCE data structures. An ultra naive LCE query algorithm
compares characters one by one until a mismatch is detected. This can be sped up significantly
by using uint_128 variables—nowadays supported by most CPUs—to compare blocks of
16 characters at once. Once we have a mismatch, we compare the last block character by
character. This algorithm is called naive.

4.3 In-Place Fingerprinting
We group 8 consecutive bytes of the input text into a block, reverse the order of the characters
in each block by simply swapping the characters (to speed up arithmetic operations when
querying the data structure), compute the fingerprint up to the end of the block using Eq. (1),
and overwrite the block with this fingerprint. Reversing the order of characters has no
significant effect on the construction time, as this construction algorithm is still the fastest on
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all tested inputs (ignoring the naive approaches that do not require any construction at all),
see Sect. 5. We use the smallest prime q > 263, which is q = 263 + 29; this worked without
any collision detected and with MSB = 0 for all stored fingerprints across all tested texts.
We also use uint_128 and the appropriate extended processor instructions for multiplying
two 64-bit fingerprints.

Answering LCE queries using the procedure explained in Sect. 2.1 is done block-wise, i.e.,
in steps by 8, 16, . . . characters. Within a block, instead of reconstructing and comparing
fingerprints of short substrings, we first translate the fingerprint of the block back to its
original contents (characters from T ) and scan these characters naively. Because this is faster
for LCE values smaller than 256, we also do this at the start of every LCE query. That
means that we only start the exponential search after scanning 8 blocks of 8 characters each.
We do the same when the final binary search reaches an interval shorter than 256 characters.

4.4 String Synchronizing Sets

While constructing a synchronizing set S, we only need to keep the fingerprints of a window
of size 2τ in memory. For reasons of speed, we do so by using a ring buffer of size 2dlg 2τe:
the power of two allows us to compute the positions in the buffer using fast bit operations.

When sorting the suffixes of T ′, we first use sequential radix sort (bingmann_msd_CI3_sb)
by Bingmann et al. [11] to reduce the alphabet size of T ′ (its characters are length-3τ
substrings of T ). Then, we compute the suffix array using SAIS-LITE [40], because it is
the fastest for integer alphabets [3]. According to Sect. 3.2, we now have to compute the
LCP array of T ′. However, since in the end we are interested only in the LCP values within
the original text T , we deviate slightly from Eq. (2) and compute a sparse LCP array of T ,
using the positions from S as indexed positions. For this, we rely on [32, Fact 5.1] that the
lexicographic order of suffixes of T ′ coincides with the order of the corresponding suffixes
of T . Apart from eliminating the need to map positions from T ′ back to T , this also saves
us from performing the 3τ naive character comparisons at the end of the query in Eq. (2).

For the actual LCE computation for positions in S, we also build an RMQ data structure
on the sparse LCP array; we apply a data structure by Ferrada and Navarro [16] for this
purpose. We use a trick to speed up RMQ computations: since we know the length of the
interval on which an RMQ is performed, we can make use of the fact that scanning small
intervals is faster than an RMQ [29]. In our implementation, we only use the complicated
RMQ machinery for intervals larger than 1024; this value yielded the fastest query times.
Smaller intervals are simply scanned for the minimum. We implemented two variants of LCE
queries:

Prefer-short corresponds to the description in Sect. 3.2: First, scan 3τ characters from
T naively; if they are equal, compute the successors, and then apply Eq. (2) (with the
modification described in the preceding paragraph). This variant should be used when small
LCE values are expected, as the procedure is likely to stop already in the initial scan (before
computing the successors).

Prefer-long, on the other hand, is optimized for a setting where large LCE values
are expected. Here, the important observation is that the initial naive scan could reach
synchronized positions much earlier than after 3τ comparisons. From that point on, one
could immediately resort to LCE computation on T ′. We therefore swap the computation of
the successors (si′ and sj′) and the naive scan. The naive scan then only has to verify that
T [i, si′) and T [j, sj′) indeed match.
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Table 1 Additional information about inputs used in evaluation: name, size n, alphabet size σ,
and sizes of the corresponding synchronizing sets |Sτ | for τ = 256, 512, 1024, and 2048.

name n σ |S256| |S512| |S1024| |S2048|

dblp.xml 296 135 874 97 2 304 012 1 153 799 578 703 288 758
dna 403 927 746 16 3 141 655 1 575 668 788 113 393 823

english.1024MB 1 073 741 824 239 8 354 560 4 187 042 2 095 466 1 047 924
proteins 1 184 051 855 27 9 215 429 4 616 809 2 341 374 1 155 364
sources 210 866 607 230 1 640 498 821 450 417 457 205 792

cere 461 286 644 5 31 619 034 26 205 215 20 013 847 12 699 848
coreutils 205 281 778 236 1 596 863 800 826 422 577 205 539

Escherichia_Coli 112 689 515 15 876 378 439 647 222 292 109 797
einstein.de.txt 92 758 441 117 721 365 361 616 181 080 90 702
einstein.en.txt 467 626 544 139 3 640 253 1 823 454 998 765 547 184

influenza 154 808 555 15 1 204 011 604 046 301 601 151 142
kernel 257 961 616 160 2 008 714 1 006 209 505 080 252 391

5 Experimental Evaluation

We tested the data structures from Sect. 4: ultra_naive and naive (Sect. 4.2), our-
rk (fingerprinting from Sect. 4.3), and sssτ (string synchronizing sets from Sect. 4.4
with τ = 256, 512, 1024, 2048) in the both variants (pl denotes the prefer-long vari-
ant). Our implementations are available at https://github.com/herlez/lce-test. We
also compared our implementations with existing implementations: prezza-rk (https:
//github.com/nicolaprezza/rk-lce) and data structures using the compressed suffix trees
(CST) sada and sct3 contained in SDSL [25] (https://github.com/simongog/sdsl-lite).
Other existing implementations were excluded due to their much higher space consumption.

Our experiments were conducted on a computer with two Intel Xeon E5-2640v4 CPUs
(each with 10 cores at 2.4GHz base frequency (3.4GHz maximum turbo frequency) and
cache sizes: 32KB L1, 256KB L2, 25.6MB L3 cache) and 64GB RAM. All algorithms are
sequential and only use a single core, and the results are averages of five runs. The code was
compiled with GCC 9.2.0 and compiler flags -O3, -ffast-math, and -march=native.

We ran all algorithms on the input shown in Tbl. 1. The texts were taken from the
well-established benchmark suite Pizza&Chili [17]. Data sets from the top half of the table are
from the regular corpus, whereas those from the bottom half are from the repetitive corpus.

Apart from several characteristics of the input texts, like length and alphabet size, Tbl. 1
also shows the sizes of the resulting string synchronizing sets for different values of τ . These
numbers confirm our claim from Sect. 3.2 that the additional measures for keeping the SSS
small are not necessary in practice, as it can be observed that the growth of SSS size is
almost always perfectly proportional to the decrease of the values τ (growth rate only slightly
less than 1). The only notable exception is the data set “cere”, one of the highly repetitive
texts, which contains long runs (of the character N). There, for example, when halving τ
from 512 to 256, the SSS grows only by a factor of ≈ 1.21 (instead of the expected ≈ 2).

5.1 Construction and Space Usage
Fig. 2 shows the construction times and the space usage of the data structures. For the SSS
and CST data structures, that figure shows two numbers: the final size of the data structure

https://github.com/herlez/lce-test
https://github.com/nicolaprezza/rk-lce
https://github.com/nicolaprezza/rk-lce
https://github.com/simongog/sdsl-lite
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Figure 2 Construction time in nanoseconds and memory consumption in bytes per character of
the input for the LCE data structures. The upper mark is the memory peak during construction,
and the lower mark is the memory required for the final data structure. (Needs colors for viewing.)
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(bottom mark) and the memory peak during construction time (top mark). The difference of
these two numbers is therefore the additional space at construction time, which results from
the intermediate steps using additional data structures (as described in Sect. 4.4 for SSS).

The other data structures need no extra space during construction, as they are either
in-place (“prezza-rk” and “our-rk”) or do not do any preprocessing at all (“ultra_naive”
and “naive”). Also, “our-rk” is significantly faster to build than “prezza-rk” on all inputs; it
is 19.76 times faster on “sources”. The CST could not be computed for “english.1024MB”.
Overall, the CST data structures require the most memory. They are also the slowest to
construct on all texts but “cere”, “coreutils”, and “kernel”, where SSS is slower for some τ .

The first thing to note is that both time and space requirements grow for SSS with
decreasing parameter τ . For space, this is what one would expect immediately, whereas for
the running time, this needs further explanation: the times for sorting the characters of T ′,
which are substrings of T , depend both on their length 3τ and their number |S|. One could
now conjecture that, in all cases, roughly the same amount of characters has to be sorted,
resulting in construction times mostly independent of τ . However, as our string sorting
procedure is prefix aware (it only considers the strings up to their distinguishing prefixes),
the 3τ -long substrings are usually not inspected in full. This implies that the number of
strings can have a higher impact on the running times than their total length, despite the
fact that the total length of the strings remains the same (e.g., “english.1024MB”). For other
texts (like “dblp.xml”), the construction times are very similar for different values of τ , but
are generally faster with growing τ . The notable exception is again the data set “cere”, where
the order on the time-axis is reversed (but not on the space-axis). This can be explained as
follows: we already said before that the growth of the size of the SSS is much less pronounced
with decreasing values of τ than for the other data sets. The string sorter is likely to inspect
a number of characters proportional to the length of the strings. Therefore, the sorting times
for the cere-substrings are influenced more by their total lengths than for the other data sets.

The construction of the SSS structure can be broken down into several steps. Fig. 3
shows examples of how much time is needed for the individual components (building SSS,
sorting the length-3τ substrings, building the successor data structure, the suffix array, the
LCP array, and the RMQ data structure). Some components differ significantly from text to
text: for “cere”, the string sorting takes almost half of the total time, whereas for “dblp.xml”
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(and partly also “english”), the construction of the SSS itself takes almost all of the time.
The charts also indicate if and where further engineering efforts can pay off: for example,
improving the successor data structure further will most likely neither speed up the final
construction times significantly nor improve the space usage. On the contrary, speeding up
string sorting or SSS construction (e.g., by parallelization) could result in an overall speedup.

5.2 Query Times

Now, we are interested in query times for different LCE values. To this end, we precomputed
queries whose results are in the interval [2k, 2k+1) for all k, allowing us to get a detailed look
at query times depending on the LCE value and use the same queries for all data structures.

We now first evaluate the query throughput of the different SSS data structures (with
varying values for τ). The results are shown in Fig. 4, grouped by the lengths of the actual
LCEs. It can be observed that the initial scanning of characters generally results in a visible
drop of the throughput for longer LCEs; smaller values of τ lead to faster query times; the
prefer-long variants are indeed faster for longer LCEs, whereas they are slower for shorter
ones; and the throughput of all variants does not drop below a threshold for very long LCEs.
Indeed, for many data sets, very long LCEs become faster, which can be explained by our
method for answering RMQs: for very long LCEs, the corresponding LCP values are likely to
be close together in the LCP array, so our query procedure is likely to use the fast scanning
for the minimum instead of invoking the heavy O(1)-time machinery. Given that the results
for τ = 512 and τ = 256 are almost equally fast (in particular for “prefer-long”), we choose
the larger of the two values for the following tests, as it results in a smaller data structure.

Fig. 5 shows the query throughput of all data structures (for SSS only with τ = 512).
We observe that “ultra_naive” is always slower than “naive” (this comes at no surprise);
for short LCEs (roughly up to 28), “ultra_naive”, “naive”, and “sss512” are fastest due to
the simple initial scanning; for longer LCEs (greater than 212), “ssspl512” becomes the fastest
data structure (also faster than “sss512”, which becomes faster than the naive approaches
for LCEs longer than ≈ 212); “our-rk” is slower than Prezza’s original implementation
“prezza-rk” except for medium sized LCEs around 25–210; and SSS’s are much faster than
the fingerprinting or naive methods for LCEs longer than ≈ 212. The CST data structures
“sada” and “sct3” are of similar speed and faster than “ultra_naive” only for long LCEs,
around 216 on most inputs. On the repetitive texts “einstein.de.txt” and “einstein.en.txt”
both are faster than the fingerprint data structures for medium-size LCEs around ≈ 213.

6 Conclusions

We conclude from the experiments that string synchronizing sets (SSS) are the method
of choice if their 10–20% overhead on top of the original text size fits into RAM, as they
naturally combine the best of two worlds: they answer short LCEs equally fast as naive
scanning methods, but are much faster for long LCEs and have a guaranteed worst-case
query time. This threshold is much earlier than previously conjectured: even for LCE values
larger than ≈ 29, the additional effort for constructing the data structure pays off. If even the
little extra space for the SSS is too much and worst case query times have to be guaranteed
for long LCEs, then one should use an in-place fingerprinting method.
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A Detailed Results for Predecessor Queries

(a) τ = 256
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Figure 6 Query throughput and space usage for static successor data structures on SSS’s.
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(a) τ = 512
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Figure 7 Query throughput and space usage for static successor data structures on SSS’s (cont.).
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(a) τ = 1024
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Figure 8 Query throughput and space usage for static successor data structures on SSS’s (cont.).
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(a) τ = 2048
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Figure 9 Query throughput and space usage for static successor data structures on SSS’s (cont.).


	Introduction and Related Work
	Preliminaries
	Karp–Rabin Fingerprints
	Static Successor Data Structures

	LCE Data Structures
	In-Place Fingerprinting
	String Synchronizing Sets

	Implementation
	A Simple but Fast Static Successor Data Structure
	Naive LCE Queries
	In-Place Fingerprinting
	String Synchronizing Sets

	Experimental Evaluation
	Construction and Space Usage
	Query Times

	Conclusions
	Detailed Results for Predecessor Queries

