
Faster Block Tree Construction
Dominik Köppl #Ñ

Department of Computer Science, University of Muenster, Germany

Florian Kurpicz # Ñ

Karlsruhe Institute of Technology, Germany

Daniel Meyer
Karlsruhe Institute of Technology, Germany

Abstract
The block tree [Belazzougui et al. J. Comput. Syst. Sci. ’21] is a compressed text index that can
answer access (extract a character at a position), rank (number of occurrences of a specified character
in a prefix of the text), and select (size of smallest prefix such that a specified character has a
specified rank) queries. It requires O(z log(n/z)) words of space, where z is the number of Lempel-Ziv
factors of the text. For some highly repetitive inputs, a block tree can require as little as 0.015
bits per character of the text. Small values of z make the block tree a space-efficient alternative
to the wavelet tree, which is another index for these three types of queries. While wavelet trees
can be constructed fast in practice, up so far compressed versions of the wavelet tree only leverage
statistical compression, meaning that they are blind to spaced repetitions.

To make block trees usable in practice, a first step is to find ways in constructing them efficiently.
We address this problem by presenting a practically efficient construction algorithm for block trees,
which is up to an order of magnitude faster than previous implementations. Additionally, we
parallelize our implementation, making it the first block tree construction implementation that
works in parallel in shared memory.

2012 ACM Subject Classification Theory of computation → Data compression; Theory of computa-
tion → Pattern matching

Keywords and phrases compressed data structure, block tree, Lempel-Ziv compression, longest
previous factor array, rank and select

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.87

Supplementary Material Software (Source code): §/pasta-toolbox/block_tree
Software (Comparison with competitors and raw data): §/pasta-toolbox/block_tree_experiments

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
Dominik Köppl: Supported by JSPS KAKENHI Grant Numbers JP21K17701 and JP23H04378

© Dominik Köppl, Florian Kurpicz, and Daniel Meyer;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 87;
pp. 87:1–87:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominik.koeppl@uni-muenster.de
https://dkppl.de
https://orcid.org/0000-0002-8721-4444
mailto:kurpicz@kit.edu
https://kurpicz.org
http://orcid.org/0000-0002-2379-9455
https://doi.org/10.4230/LIPIcs.ESA.2023.87
https://github.com/pasta-toolbox/block_tree
https://github.com/pasta-toolbox/block_tree_experiments
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

87:2 Faster Block Tree Construction

1 Introduction

We experience an every-increasing amount of textual data produced in various domains.
Examples include the exponentially increasing capability to sequence genetic data thanks to
technical advances [64], code repositories such as GitHub, or natural text collections such as
the English Wikipedia, which grows by around 2 million pages each year (currently there are
over 58 million pages)1. Since there is no expectation that the production of such texts will
decelerate, it seems that we start to drown in this sheer amount of data. Nevertheless, for
the addressed examples, there is hope in that the produced textual data is usually highly
repetitive: When sequencing two human individuals, we can expect to find that they share
more than 99.9 % of genetic data. In other domains such as code repositories or natural text
collections, version control systems are used to track all versions of a document or source
code to make it possible to revert changes or compare different versions. Since new versions
often introduce only small changes, collections of all versions of the same document are often
highly repetitive.

When stored or transmitted, texts are oftentimes compressed to save disk space or
bandwidth, respectively. The most popular techniques for lossless text compression are based
on the Lempel-Ziv 77 (LZ77) factorization [67]. Given z is the number of factors of the LZ77
factorization of a given text, we can represent the text in O(z) words of space. In many
use cases, it does not suffice to only store or transmit textual data: the data also has to
be processed. A naive way would be to decompress the data before processing it, which is,
however, prohibitive for massive datasets. To avoid unnecessary decompression, we can use
compressed text indices, which allow us to answer queries efficiently without decompression,
while also guaranteeing us (asymptotically) the same space as the compressed text.

The block tree [6] is such a compressed text index that requires O(z log(n/z)) words of
space for a text T of length n with z LZ77 factors. By default it can answer access queries.
However, it can be augmented with additional information to also answer rank and select
queries. The queries are defined as follows.

access(T, i) returns the character at position i, i.e., T [i] for i ∈ [0, n),
rankα(T, i) returns the number of occurrences of the character α in the i-th prefix of the
text, i.e., rankα(T, i) = |{j ≤ i : T [j] = α}| for α ∈ Σ and i ∈ [0, n), and
selectα(T, i) returns the position of the first character α that has rank i, i.e., selectα(T, i) =
min{j : rankα(T, j) = i} for α ∈ Σ and i ≤ rankα(T, n − 1).

One of the most popular data structures answering all three types of queries is the wavelet
tree [35]. It is used in, among others, compressed full text indices based on the BWT [23,31,52]
or on a grammar [15,16], lossless data compression [22,37,42], and computational geometry [14].
For more related work, see Section 3. Using the block tree, all these queries can be answered
in O(log(n/z)) time, with different space-time trade-offs available, see Section 4.

Our Contribution. In this paper, we present a block tree construction algorithm that lever-
ages properties of the longest previous factor array, which is a common tool for computing the
LZ77 factorization. We analyze our algorithm and show that it has the same asymptotic time
complexity as previously presented construction algorithms. However, in our experimental
evaluation, we observe that the implementation of our proposed algorithm is up to an order
of magnitude faster than previous implementations. Finally, we show that our construction
algorithm can also be parallelized.

1 See https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia, last accessed 2023-07-04.

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

D. Köppl, F. Kurpicz, and D. Meyer 87:3

2 Preliminaries

Let T = T [0]T [1] . . . T [n − 1] be a text of length n over an alphabet Σ = [0, σ). The substring
T [i..j] = T [i] . . . T [j] is called prefix if i = 0 and suffix if j = n − 1.

The Lempel-Ziv 77 (LZ77) factorization [67] parses the text into z factors f0, . . . , fz−1 ∈
Σ+ such that T = f0 . . . fz−1. For all i ∈ [0, z), fi is either a single character not occurring
in f0, . . . , fi−1 or the longest substring occurring at least twice in f0, . . . , fi. The LZ77
factorization can be computed in linear time and space (see Ref. [2] for a survey).

The longest previous factor array LPF stores at its i-th entry the length ℓ of the longest
substring T [i..i+ℓ) having a previous occurrence in the text [17], i.e., LPF[i] = max{ℓ : T [i..i+
ℓ) = T [j..j + ℓ) for j < i} for i ∈ [0, n). In particular, if i is the starting position of an
LZ77 factor f , then LPF[i] = |f |, and thus we can compute the LZ77 factorization in linear
time by scanning the LPF array, which can be constructed in linear time [17]. Later on, we
also need the position of the occurrence of a longest previous factor, which we store in the
previous occurrence array PrevOcc. The previous occurrence array is also called quasi suffix
array [27]. Here, for all i ∈ [0, n) we have T [i..i + LPF[i]) = T [PrevOcc[i]..PrevOcc[i] + LPF[i])
if LPF[i] > 0. We write PrevOcc[i] = −1 if LPF[i] = 0, i.e., when T [i] is the leftmost occurrence
of a single character in T .

3 Related Work

In this section, we give related work for compressed data structures answering our three
types of queries (access, rank, and select) and work on block trees.

Access, Rank, and Select Data Structures

Answering queries such as access, rank, select are profound problems that have been well
addressed in literature. Starting with the case for binary alphabets, there are plenty of
results for indexing compressed [10,31,55,56,61] and uncompressed [34,44,48,54,58,65,66] bit
vectors. A recent compressed approach involves the linear approximation of the distributions
of parts of the ranks in the bit vector [10]. Despite that block trees also work on general
alphabets, a block tree variant over the gapped compressed integer array of the ranks of the
bit vector can be used to answer rank and select queries [24].

For larger alphabets, we are aware of statistically compressed data structures, where
space is expressed in relation to the k-th order of empirical entropy Hk with k = o(logσ n).
Most prominent is the Huffman-shaped wavelet tree [35] using n(H0(T) + 1) + o(n(H0(T) +
1)) + O(σ log n) bits, and solving all three queries in O(log σ) time. This time could be
reduced to O(1 + log σ/ log log n) with multiary wavelet trees [25], and by a later work [33],
the space got reduced to nH0(T) + o(n) bits. In practice, (Huffman-shaped) wavelet trees
are also well-engineered in practice [13,18,19,20,21,26,28,46].

For faster queries on large alphabets, Golynski et al. [32] gave a data structure taking
n lg σ + o(n log σ) bits that answers all three types of queries in O(log log σ) time. The space
got improved by Barbay et al. [4] to nH0(T) + o(n(H0(T) + 1)) bits. Allowing slightly worse
time complexities, Barbay et al. [5] achieved nHk(T) + o(n log σ) bits, answering all queries
in o((log log σ)1+ϵ) time, for any fixed constant ϵ > 0. These time bounds were improved by
Grossi et al. [36] to O(log log σ) for rank and select, and constant time for access. Finally,
Belazzougui and Navarro [9] presented a data structure achieving nHk(T) + o(n log σ) bits
of space, while answering rank in O(log logw σ) time. It further can answer access and select

ESA 2023

87:4 Faster Block Tree Construction

in O(1) and any time in ω(1), respectively, or the other way around. There are also several
results on lower bounds for data structures answering the three queries we address here.

Another line of research is to augment grammar compression with an index to support
our queries. Here, Belazzougui et al. [7] and Pereira et al. [57] presented grammar indices
answering rank and select queries in O(log n) time. Their indices use O(gσ log n) bits of space
when built on a grammar of size g, where the latter reference requires that the grammar
is balanced. This requirement can be dropped in the light that a grammar can be made
balanced in linear time [29].

Block Trees

Finally, we focus on block trees. Block trees have been proposed by Belazzougui et al. [8],
who proposed a Monte Carlo construction algorithm using Karp-Rabin fingerprints in the
external memory model. In the journal version [6], the authors provided two construction
algorithms which we analyze in Section 4.1. Navarro [51, Section 4.2] recently surveyed block
trees, who addresses also most of the references below for applications and variations.

A first application is pattern matching, where Navarro [50] uses block trees for locating
pattern in the text. His index uses O(z log(n/z)) words of space and finds all occ occurrences
of a pattern of length m in O(m2 log n + occ logϵ n) time for any constant ϵ > 0. Brisaboa et
al. [11] presented an extension of block trees to a two-dimensional data structure simulating
k2-trees. Recently, Cáceres and Navarro [12] applied block trees for the compression of the
suffix tree topology, the suffix array, and its inverse.

Despite the fact that the space of block trees is related to the size of the LZ77 factorization,
the space can, if we vary the definition of a block tree, be made related to the size γ of a
string attractor [39] or the substring complexity δ [62].

For the former (string attractor size γ), we recall that a string attractor is a set of
positions of the text such that each substring has an occurrence in the text that contains
a position of the string attractor. Kempa and Prezza [40, Theorem 5.3] gave a variant of
block trees whose blocks cover substrings of consecutive string attractor positions and thus
partition T irregularly. Their variant uses O(γ log(n/γ)) = O(z log(n/z)) space and extracts
a length-ℓ substring in O(log(n/γ) · (1 + ℓ)/ logσ n) time. For indexing, Prezza [59] (for rank
and select queries) and Navarro and Prezza [53] (for pattern matching) could revert the
property that blocks on the same level have equal length while retaining the space size.

For the latter (substring complexity δ), let δ := max{dk/k : k ∈ [1, n]} denote the
substring complexity of T , where dk is the number of distinct length-k substrings of T . Then
there is a block tree variant that can be represented in O(δτ logτ

n
δ) space supporting queries

in O(log n
δ) time [41].

4 Block Trees

Let T be a text of length n over an alphabet of size σ, whose LZ77 factorization consists of
z factors. The block tree [6] is a compressed index requiring O(z log(n/z)) words of space. It
supports access, rank, and select queries in O(log(n/z)) time. In the following, we describe a
block tree with two integer parameters s and τ that are greater than 1, which specify the
out-degree of the root and all other internal nodes, respectively. For simplicity, we assume
that n = s · τh for some integer h. Now, the block tree is a tree of height h = 1 + logτ

z log n
s log n

with parameters τ and s such that the root has s children and every internal node is a leaf
or has τ children.

D. Köppl, F. Kurpicz, and D. Meyer 87:5

Figure 1 The block tree (left) and its pruned version (right) for the text T = AAAABBAAABABBAA
with τ = 2 and s = 4. Dashed arrows indicate pointers to the leftmost occurrence of the block the
arrow starts at. The red line indicates the offset stored in addition to the pointer. Note that only
characters in leaves are stored explicitly. For simplicity, our leaves contain only a single character.
In the pruned block tree, we can replace an additional AA block. Note that we cannot prune the
second AA block, as another block points into it.

Each node u represents a substring of T called block Bu. The root represents the whole
text T and has s children representing s consecutive blocks of length n/s. We refer to all
blocks with the same depth as a block tree level. Two blocks are consecutive if they are in the
same block tree level and if they are consecutive in T . Let Bi · Bi+1 be the concatenated
substring of two consecutive blocks. We mark the blocks i and i + 1, if Bi · Bi+1 is the
leftmost occurrence of that substring in T . All non-root nodes that are not in the last level
represent either marked or unmarked blocks.

All marked blocks Bv are internal nodes with τ children. These children represent
consecutive blocks of length |Bv|/τ whose concatenation is Bv. Unmarked blocks Bu, on
the other hand, are leaves that only store a pointer towards the pair of consecutive blocks
Bi · Bi+1 containing the leftmost occurrence of Bu and the offset of that occurrence in the
blocks. The number of blocks per level of the block tree is bounded.

▶ Lemma 1 ([6, Lemma 1]). Any level of a block tree (except the first) contains ≤ 3zτ blocks.

We have reached the last (or deepest) level of the block tree when explicitly storing the
representing substring requires less space than storing the pointer for an unmarked block.
At this level, we store the substring of each unmarked block explicitly. For example, if
|Bu| ∈ Θ(logσ n), its encoding requires O(1) words of space. Note that on each level, the
block length decreases by a factor of τ .

The block tree requires O(s + zτ logτ
n log σ
s log n) words of space. Choosing τ as constant

yields the minimum space requirement of the block tree mentioned above. Choosing s = z

results in block trees of size O(zτ logτ
n log σ
z log n) words. Different values for τ can introduce

other space-time trade-offs, as described by Belazzougui et al. [6].

4.1 Construction
Belazzougui et al. [6] give two construction algorithms, which we briefly review. Their first
algorithm requires O(n) words of working space, where the idea is to use an Aho-Corasick
automaton [1] that can identify all consecutive pairs of blocks B0 ·B1, B1 ·B2, . . . , Bs−2 ·Bs−1
on the first level. This automaton is then used to identify the first occurrences of all pairs
and to mark them accordingly. To set the leftwards pointers into unmarked blocks, the
automaton is replaced by a new automaton that recognizes all unmarked blocks is created.
The text is traversed using this automaton. Whenever an unmarked block is found for
the first time, a pointer (and offset) is stored. For then on, the second automaton is no

ESA 2023

87:6 Faster Block Tree Construction

longer of use and can be removed. Subsequently, the algorithm continues with the next level,
considering only the unmarked blocks from the previous level.

Their second algorithm uses O(s + zτ) words of working space and runs in O(n) expected
time. Here, the general idea is to replace the Aho-Corasick automaton with Karp-Rabin
fingerprints [38], i.e., storing Karp-Rabin fingerprints of all consecutive pairs of blocks Bi ·Bi+1
in a hash table. Since there are at most 3zτ blocks per level, this approach requires only
O(s + zτ) words of working space. Both algorithms work in linear time if s = Θ(z).

The block tree as described here only supports access queries. For rank and select support,
additional information has to be stored for each marked block. In the case of rank queries,
the occurrence of all characters in the text up to the beginning of the block is necessary. For
more details, we refer to the original block tree paper [6].

Pruning. When we construct block trees with one of the two aforementioned construction
algorithms, we meet the asymptotic space bounds—but the block tree may contain more
blocks than necessary, see Figure 1. Remember that we mark the first occurrence of each
pair of consecutive blocks Bi · Bi+1 to guarantee that any block Bu to their right can point
to them. However, there may be no rightwards block pointing to either (or both) Bi, Bi+1.
In this case we would replace one of the blocks (or both) with leftward pointers, if one (or
both) of them occurs previously. Since we do not modify this part of the algorithm, we refer
to Belazzougui et al.’s [6, Section 6.1] description of the pruning step for more details.

5 Block Tree Construction using the LPF Array

We now describe our new block tree construction algorithm based on the LPF array.2 First,
in Section 5.1, we mark blocks using only the LPF array. Then, in Section 5.2, we find the
leftmost occurrences of unmarked blocks, before, in Section 5.3, we combine all these ideas
to our new algorithm.

5.1 Marking Blocks

The block tree is closely related to the LZ77 factorization of the text. Consecutive blocks
Bi−1, Bi, and Bi+1 are only marked if an LZ77 factor starts in Bi, i.e., if they contain the
leftmost occurrence of some substring. Similarly, LPF values witness the shortest substring
starting at each text position that is a leftmost occurrence. Hence, we can make use of
the LPF array to mark blocks. Let s(Bu) denote the starting text position of the substring
represented by Bu.

▶ Lemma 2. Given three consecutive blocks Bi−1, Bi, and Bi+1 of length ℓ. We mark Bi if
LPF[s(Bi−1)] < 2 · ℓ or LPF[s(Bi)] < 2 · ℓ is true.

Proof. By the definition of the LPF array, a substring T [i..i + ℓ) has a preceding occurrence
in the text if LPF[i] ≥ ℓ. We only leave Bi unmarked if both LPF[s(Bi−1)] and LPF[s(Bi)]
are at least 2 · |Bi| because this means that there is a previous occurrence of both Bi−1 · Bi,
and Bi · Bi+1. Otherwise, if there is no previous occurrence of one of the two pairs, we have
to mark Bi. ◀

2 The description is based on and has text overlaps with Daniel Meyer’s Master’s thesis [49].

D. Köppl, F. Kurpicz, and D. Meyer 87:7

To determine whether the last block is marked, only its preceding block has to be
considered. Otherwise, it is the same argument as used in Lemma 2. Since each level of the
block tree contains O(zτ) blocks, we get the following result.

▶ Lemma 3. Given the LPF array, we can mark all blocks of a level in the block tree in
O(zτ) time.

5.2 Identifying Leftmost Occurrences
Now, for each unmarked block, we have to identify the leftmost substring in the text that is
equal to that block, as we need to add pointers (and offsets) from the unmarked blocks to
these occurrences. Note that in all levels but the first one, the index of the block Bu does
not automatically translate to the block’s starting position s(Bu), as we do not know how
many blocks have been unmarked to its parent’s left in the previous level. Therefore, we
need to store additional information regarding a block’s starting position for each block.

5.2.1 Leftmost Occurrences as Text Positions
In this section, we describe how to identify the text position of the previous occurrence.
Afterwards, in Section 5.2.2, we show how to identify the block that contains this text
position on the current level. While the LPF array is sufficient to mark blocks, it does not
contain information necessary to find the leftmost occurrences of blocks that we require
for the leftward pointers. We now give a naive approach to compute the text positions in
Section 5.2.1.1. Then, in Section 5.2.1.2, we improve the naive approach by using dynamic
programming to obtain better asymptotic running times. The general idea in both cases is
to follow the leftmost occurrences of previous occurrences for all blocks on a level.

▶ Lemma 4. Let i ∈ [0, n) be a text position, j = PrevOcc[i], and k = PrevOcc[j]. If
0 < LPF[i] ≤ LPF[j], then T [i..i + LPF[i]) = T [j..j + LPF[i]) = T [k..k + LPF[i]).

Proof. LPF[i] = max{k : T [i..i + k) = T [j..j + k) for j < i} and PrevOcc[i] gives us the
position j, where this longest factor occurs. Since 0 < LPF[i], we have T [i..i + LPF[i]) =
T [j..j + LPF[i]) by definition. We also know that for text position j, there exists a previous
factor of length at least LPF[i] at position k. Hence T [i..i + LPF[i]) = T [k..k + LPF[i]). ◀

The same holds not only for length-LPF[i] substrings, but for general length-ℓ substrings
with ℓ ≤ LPF[i], which is useful when processing a block tree level where blocks have all the
same length ℓ.

▶ Observation 5. Let i ∈ [0, n) be a text position and j = PrevOcc[i]. If 0 < ℓ ≤ LPF[i],
then T [i..i + ℓ) = T [j..j + ℓ).

5.2.1.1 Naive Approach

Using these properties, we can describe a naive algorithm to find the leftmost occurrence of a
given unmarked block Bu = T [i..i + ℓ). Here, we simply follow the PrevOcc entries until the
length of the longest previous factor of the previous occurrence is smaller than ℓ. This leads
us to the first occurrence of length ℓ. Unfortunately, this naive approach requires O(n) time
for each block. For example, in an all-a text aa . . . a, for text position i we would follow the
longest previous occurrences i − 1, i − 2, . . . , 0 in case that PrevOcc(i) = i − 1 for all i > 0.
Therefore, using the naive approach, we do not achieve the asymptotic running time of the
original block tree construction algorithms by Belazzougui et al. [6]. However, in practice,
this approach works very well, as we observed in our experimental evaluation in Section 6.

ESA 2023

87:8 Faster Block Tree Construction

Table 1 LPF, PrevOcc, FirstOcc2, and the block tree (with parameters s = 5, τ = 2) for the
string AABAAAAAAA. The arrows above the first level of the block tree indicate the FirstOcc2 values.

i T [i] T [i..n) LPF[i] PrevOcc[i] FirstOcc2[i] block tree

0 A AABAAAAAAA 0 -1 -1
1 A ABAAAAAAA 1 0 0
2 B BAAAAAAA 0 -1 -1
3 A AAAAAAA 2 0 0
4 A AAAAAA 6 3 0
5 A AAAAA 5 4 0
6 A AAAA 4 5 0
7 A AAA 3 6 0
8 A AA 2 7 0
9 A A 1 8 8

5.2.1.2 Dynamic Programming

To retain the time complexities of the original block tree construction algorithms, we make
use of dynamic programming to find the leftmost occurrences of a block in the text. We
start with the definitions of ℓ-factors and FirstOccℓ.

▶ Definition 6 (ℓ-factor and FirstOccℓ). For ℓ > 0, we denote T [i..i + ℓ) as ℓ-factori.
FirstOccℓ[i] stores PrevOcc[i], if no previous occurrence of ℓ-factori exists (remember that
PrevOcc[i] = −1 if T [i] is the leftmost occurrences of a character, i.e., LPF[i] = 0) and the
leftmost occurrence of ℓ-factori otherwise.

We can compute FirstOccℓ using dynamic programming by iterating over PrevOcc from
left to right. To start with, we set FirstOccℓ[0] = −1. Suppose that we have processed
FirstOccℓ[0..i − 1] and are at text position i ∈ [0, n − ℓ). For j := PrevOcc[i], we consider
two cases:
Case 1 LPF[i] ≥ ℓ and LPF[j] ≥ ℓ: From LPF[j] ≥ ℓ follows that ℓ-factorj has a previous

occurrence. Combined with Observation 5 and LPF[i] ≥ ℓ, we can conclude that the
previous occurrence of ℓ-factorj is also an occurrence of ℓ-factori. As we already calculated
FirstOccℓ[j], we can set FirstOccℓ[i] = FirstOccℓ[j].

Case 2 LPF[i] < ℓ or LPF[j] < ℓ: We set FirstOccℓ[i] = j since either T [i..i + ℓ) or T [j..j + ℓ)
is the leftmost occurrence of ℓ-factori.

See Table 1 for an example. Note that we still need the LPF array to correctly interpret any
FirstOccℓ[i]. For LPF[i] ≥ ℓ but LPF[j] < ℓ we know that ℓ-factori has an earlier occurrence
at j but no occurrence further left. This dynamic programming approach requires O(n) time
to compute FirstOccℓ. Such time is unfeasible if we need to calculate FirstOccℓ for each
level of the block tree.

However, it is possible to compute FirstOccℓ0 using FirstOccℓ1 for ℓ1 ≥ ℓ0, as every
occurrence of an ℓ1-factor contains an ℓ0-factor as a prefix. There might be an occurrence of
the ℓ0-factor further left, but we store information about that in FirstOccℓ1 . Remember
that we also store pointers to a previous occurrence of the longest previous factor if that
factor is shorter than ℓ1.

We can now use this property to identify the leftmost occurrence for each block level-by-
level in FirstOcc∗, where we store FirstOccℓ for the current level and update it for each
following level. Recall that by definition, each pair of marked blocks contains the leftmost

D. Köppl, F. Kurpicz, and D. Meyer 87:9

occurrence of at least one substring of T . Therefore, each leftmost occurrence of any substring
with length at most the current block level length ℓ is contained in a marked block. All
blocks in the current level (except for the first level) are children of marked blocks in the
level before. Hence, the leftmost occurrence of each substring of a length equal to the current
block length is contained in a block in the current level. We still have to update all text
positions contained in the previous block tree level. This is necessary as we need to consider
cases where the values in the LPF array are smaller than the last level’s block size ℓ1 but
greater than the next level’s block size ℓ0, i.e., the positions i ∈ [0, n) where ℓ0 ≤ LPF[i] < ℓ1.

In this case FirstOccℓ1 [i] points to a previous occurrence of the longest previous factor
of i. This occurrence can be in an unmarked block as it is not necessarily the first occurrence
of said longest previous factor. Hence, we also have to update FirstOcc∗ for text positions
k ∈ [0, n) that fall into an unmarked block in the previous level. We do so from left to
right. Suppose we have updated FirstOcc∗[0..k − 1] and are processing FirstOcc∗[k]. Let
p = FirstOcc∗[k]. We will update FirstOcc∗[k] if one of the two conditions is met.
Condition 1 LPF[k] ≥ ℓ0 and LPF[p] ≥ ℓ0: We know that p and k share the same ℓ0-factor

(Observation 5). Therefore, the first occurrence of ℓ0-factorp is also the first occurrence
of ℓ-factork, and we can set FirstOcc∗[k] = FirstOcc∗[p].

Condition 2 0 < LPF[k] ≤ LPF[p]: If condition 2 is met but condition 1 is not, we still know
that FirstOcc∗[k] = FirstOcc∗[p], as there are just two cases:
Case 2.1 LPF[k] < ℓ0 and LPF[p] ≥ ℓ0: Due to condition 2 and Lemma 4 and Observation 5

we know that said longest previous factor is a prefix of ℓ0-factorp. Due to LPF[p] ≥ ℓ0,
FirstOcc∗[p] points to the leftmost occurrence of ℓ0-factorp.

Case 2.2 LPF[k] < ℓ0 and LPF[p] < ℓ0: Due to condition 2 and Lemma 4 we know that
said longest previous factor has a previous occurrence at FirstOcc∗[p].

If neither condition is met, i.e., LPF[p] < LPF[k] and LPF[p] < ℓ0, k is either the leftmost
occurrence for all factors of size at least ℓ0 or FirstOcc∗[k] points to a first occurrence of a
substring smaller than ℓ0 and hence points into a marked block.

▶ Lemma 7. Updating FirstOcc∗ for all levels during the block tree construction requires
O(n(1 + logτ

z
s)) time in total.

Proof. Initializing FirstOcc∗ takes O(n) time. Every level but the first has at most 3zτ

blocks, and the size of blocks is decreasing by a factor τ for each further level. This reduces
the number of string positions still contained inside of blocks geometrically with each level.
The total sum of all block lengths is O(n(1 + logτ

z
s)) [6, Section 6.1]. Since we only have

to update FirstOcc∗ for positions in unmarked blocks in the previous level, we obtain the
required total time for all levels. ◀

5.2.2 Leftmost Occurrences as Blocks
After updating FirstOcc∗ to store the leftmost occurrence for each text position in the
current block tree level B0, B1, . . ., we still have to find the marked blocks covering the
leftmost occurrence of each unmarked block Bu.

We can map the occurrences in the text to blocks in three parts. First, we store for
each unmarked block Bi a pair ⟨FirstOcc∗[s(Bi)], i⟩ containing its leftmost occurrence and
its index in our block level in a set U . Second, we sort the set by each pair’s first element
using a radix sort, i.e., we sort our unmarked blocks by their leftmost occurrences in the
text. Third, we sequentially scan our block tree level and our sorted set U simultaneously in
the following fashion. Let ⟨occj , j⟩ be the currently considered element in U and Bi be the

ESA 2023

87:10 Faster Block Tree Construction

current block of our block tree level. If ℓ-factoroccj starts inside Bi, we set a pointer from
Bj to Bi with offset occj − s(Bi) and continue with the next element in U . Otherwise, we
continue with the next block in our block tree level.

▶ Lemma 8. For block trees with zτ = O(n), finding the blocks containing the leftmost
occurrences of unmarked blocks can be done in O(zτ) time and O(zτ) words of space.

Proof. The first and third step require O(zτ) time, as we only scan over blocks in the current
block tree level. Sorting U with radix sort requires O(zτ) time and O(zτ) words of space. ◀

Alternatively, we can also identify the mapping between text positions and blocks by
traversing the already built block tree. This mimics an access query on the block tree that
stops as soon as it reaches the current level. Such a query requires O(logτ

n log σ
s log n) time, which

is linear in the height of the tree. Overall, computing the mapping using this approach
requires O(zτ logτ

n log σ
s log n) time.

5.3 New Block Tree Construction Algorithm
Now, we can put all these building blocks together to form a practically efficient block tree
construction algorithm. First, we calculate the LPF array and PrevOcc array. We then
initialize FirstOcc∗ for ℓ = n/s and construct each block tree level top-down as described in
this section, i.e., we identify all marked blocks and then compute all pointers (and offsets)
for the unmarked blocks. Finally, we update FirstOcc∗ and repeat this process until we
reach the deepest level, where the blocks are stored explicitly. While this algorithm does
not introduce better asymptotic running times, it practically outpaces all other available
construction implementations, as we will empirically evaluate in Section 6. Overall, combining
all previous steps, we obtain the following result.

▶ Theorem 9. Given a string T of length n over an alphabet of size σ, two integers s and τ

greater than 1, we can compute the block tree in O(n(1 + logτ
z
s)) time using O(n) words of

space.

Pruning. The algorithm described in this section constructs the same block tree structure
as the algorithms described by Belazzougui et al. [6], see Section 4.1. Thus, their pruning
algorithm works without any changes of the block tree resulting from this construction.

6 Experimental Evaluation

We conducted our experiments on a server equipped with an AMD EPYC Rome 7702P (64
cores (128 hyperthreads), frequencies up to 3.35 GHz, and 256 MiB L3 cache) and 1024 GiB
DDR4 ECC RAM. The server runs Ubuntu 20.04.2 LTS. We compiled all code with GCC
12.1 using the flags -03 and -march=native. For the evaluation of our parallel code written
in OpenMP, we compiled the code with the additional flag -fopenmp.

We compare our block tree construction algorithms [43,45] with the (to our best knowledge)
only other block tree implementation by Belazzougui et al. [6].3 Their implementation uses
Karp-Rabin fingerprints (Section 4) with parameter s = 1. While s = 1 is not a feasible
choice in the formal definition of block trees (see Section 4), in practice, all levels without any
unmarked blocks are removed during the pruning phase, making this configuration possible.

3 See https://github.com/elarielcl/BlockTrees, last accessed 2023-07-04

https://github.com/elarielcl/BlockTrees

D. Köppl, F. Kurpicz, and D. Meyer 87:11

Table 2 Input names, number of characters n, alphabet size σ, number of LZ77 factors z, measure
of compressibility z log n

n log σ
, and the compression achieved with p7zip (v. 16.02) expressed by the ratio

of the compressed output size divided by the input size.

Input n σ z z log n
n log σ

p7zip

re
pe

tit
iv

e

cere 461 286 644 5 1 700 630 0.044 5.35 %
coreutils 205 281 778 236 793 915 0.013 11.75 %
einstein.en 467 626 544 139 89 467 0.0007 0.10 %
Escherichia_coli 112 689 515 15 2 078 512 0.121 7.76 %
influenza 154 808 555 15 769 286 0.033 1.69 %
kernel 257 961 616 160 1 446 468 0.021 2.53 %
para 429 265 758 5 2 332 657 0.064 6.05 %
world_leaders 46 968 181 89 175 740 0.014 1.39 %

no
n-

re
pe

tit
iv

e dblp.xml 296 135 874 97 9 576 081 0.138 12.74 %
dna 403 927 746 16 25 628 189 0.453 22.79 %
english 1 610 612 736 239 97 047 354 0.233 26.11 %
pitches 55 832 855 133 5 994 276 0.391 25.89 %
proteins 1 184 051 855 27 80 408 252 0.430 31.30 %
sources 210 866 607 230 11 598 459 0.194 15.84 %

There are two different variants of our block tree construction algorithm: LPFDP
s and

LPFs. The former uses the dynamic programming approach to identify the text position
of the previous occurrence while the latter uses the naive approach, see Section 5.2. Since
we need the LPF array for our construction algorithms, we can compute z and also choose
both s = z and s = 1. To show that our improvements are not only based on engineering,
we also include FP1 which uses fingerprints instead of the LPF array while the rest of our
code remains nearly unchanged, i.e., it is a reimplementation of the original algorithm.

For our implementation, we make use of libsais4, the fastest suffix array construction
algorithm implementation available to compute the suffix and longest common prefix arrays
that we use for the LPF array construction. We also use the int_vector from the Succinct
Data Structure Library [30] and the pasta::bit_vector [44] internally in the block tree.

We do not include fast wavelet tree construction algorithms [18, 30] in our plots as
preliminary experiments show that they can be constructed at least an order of magnitude
faster than block trees. For a detailed comparison of query speed of block trees and wavelet
trees, we refer to the block tree article by Belazzougui et al. [6]. They show that block trees
require around the same space but can answer queries an order of magnitude faster.

We conducted our sequential experiments with all combinations of τ ∈ {2, 4, 8, 16} and
maximum leaf size b = {2, 4, 8, 16}, i.e., the threshold on the number of characters stored
explicitly as a leaf. The timing starts when the input is loaded in main memory and stops as
soon as the block tree has been constructed. All reported values are the average of three
runs. We used the repetitive text corpus from the Pizza&Chili corpus5, which was also used
in the original block tree article [6]. Additionally, we used the non-repetitive Pizza&Chili
corpus6. See Table 2 for details.

4 See https://github.com/IlyaGrebnov/libsais, last accessed 2023-07-04.
5 See http://pizzachili.dcc.uchile.cl/repcorpus, last accessed 2023-07-04.
6 See http://pizzachili.dcc.uchile.cl/texts.html, last accessed 2023-07-04.

ESA 2023

https://github.com/IlyaGrebnov/libsais
http://pizzachili.dcc.uchile.cl/repcorpus
http://pizzachili.dcc.uchile.cl/texts.html

87:12 Faster Block Tree Construction

Table 3 Most space-efficient (τspace and bspace) and fastest configurations (τtime and btime) of
LPF1 on the repetitive inputs (without rank and select support).

Input τspace bspace τtime btime

cere 16 16 2 8
coreutils 8 8 2 2
einstein.en.txt 4 16 2 2
Escherichia_Coli 4 16 2 4
influenza 4 16 2 4
kernel 8 16 2 2
para 4 16 2 8
world_leaders 4 16 2 2

6.1 Sequential Block Tree Construction
In this section, we present the results of our experimental evaluation of block tree construction
algorithms. For the evaluation, we used both, repetitive and non-repetitive inputs.

Repetitive Inputs. In Figures 2 and 3, we show the construction throughput (processed
input in MiB per second) on the y-axis and the space requirements of the final block tree
(without and with additional rank and select support) on the x-axis. Plotting the throughput
helps normalizing the running times for different input sizes. Furthermore, it highlights that
the construction time of the block tree without rank and select support does not depend on
the compressibility of the input.

Surprisingly, on most inputs, smaller block trees are not that much slower to construct
than larger block trees. Our fastest construction algorithm for the smallest block trees is
always LPF1. Hence, we now only compare this algorithm with the original implementation.
This also means that following the previous occurrence in the text naively is (for small block
trees with fewer marked nodes) cheaper than explicitly computing the results. Furthermore,
choosing s = z provides no real benefit, as it does not result in a faster construction. For
most inputs, the most space-efficient configuration of LPF1 uses τ = 4 and b = 16 and the
fastest configuration of LPF1 uses τ = 2 and b = 2, see Table 3. Note that no two different
configurations result in the same space requirements, even though, they can be very close.

When constructing only the block tree without rank and select support, LPF1 is between
6.48 and 11.52 times faster than the original implementation (average: 9.51, median: 9.86).
Computing the additional data for the rank and select support is the same for our and
the original implementation. Thus, here LPF1 is only between 3.61 and 11.23 times faster
(average: 6.75, median: 6.24), despite the fact that the times for LPF1 include also the
LPF array construction. We further want to mention that the LPF array construction also
introduces higher memory requirements during the construction than the fingerprint-based
approaches. Hence, there is a working-space-time trade-off for the construction.

Non-Repetitive Inputs. We now give additional experimental results on the non-repetitive
inputs. We only use 32 MiB prefixes of the texts, as the block tree construction algorithm by
Belazzougui et al. [6] requires more than 1 TiB of working space for larger non-repetitive
inputs. This is due to the order in which their algorithm constructs the block tree. Instead
of first compressing all data internally, many operations and auxiliary data is computed on
the uncompressed data. The results of these experiments are depicted in Figure 5.

D. Köppl, F. Kurpicz, and D. Meyer 87:13

0.2 0.4 0.6
0

2

4

6

th
ro

ug
hp

ut
(M

iB
/s

)
cere

0.5 1 1.5 2

coreutils
FP1

LPFz

LPFDP
z

LPFDP
1

LPF1

original BT [6]

0.02 0.04 0.06 0.08
0

2

4

6

th
ro

ug
hp

ut
(M

iB
/s

)

einstein.en

1 1.5 2

Escherichia_Coli

0.5 1 1.5

influenza

0.2 0.3 0.4 0.5
0

2

4

6

space (bit/n)

th
ro

ug
hp

ut
(M

iB
/s

)

kernel

0.4 0.6
space (bit/n)

para

0.5 1 1.5
space (bit/n)

world_leaders

Figure 2 Block tree construction without rank and select support, showing throughput (processed
input in MiB per second) and space requirements of the final block tree (bits per character of the
input) on repetitive inputs. The range of each x-axis depends on the compressibility of the input.
Data points for each algorithm show different configurations of τ and b, see Table 3 for more details.

Overall, the results are similar to the results for the repetitive inputs: LPF1 is the
fastest construction algorithm most of the time. However, on some inputs, the dynamic
programming LPFDP

z is faster. This is due to the long chains of previous occurrences that
have been marked. Since the texts are non-repetitive, there are fewer marked blocks overall,
resulting in bigger block trees. Overall, for non-repetitive inputs, computing larger block
trees is slightly faster than computing very space-efficient block trees. This becomes very
apparent for block trees with rank and select support.

6.2 Parallel Block Tree Construction

While the total running time of our algorithm is fast compared to our competitor, on average
71.33 % of the running time is spent for the LPF array construction. Fortunately, libsais
supports parallel computation. In addition, we use the LZ77 factorization algorithm by

ESA 2023

87:14 Faster Block Tree Construction

0.8 1 1.2 1.4
0

2

4
th

ro
ug

hp
ut

(M
iB

/s
)

cere

20 40

coreutils
FP1

LPFz

LPFDP
z

LPFDP
1

LPF1

original BT [6]

0.6 0.8 1 1.2
0

2

4

th
ro

ug
hp

ut
(M

iB
/s

)

einstein.en

4 6 8

Escherichia_Coli

2 3 4

influenza

5 10
0

2

4

space (bit/n)

th
ro

ug
hp

ut
(M

iB
/s

)

kernel

1 1.5 2
space (bit/n)

para

6 8 10 12
space (bit/n)

world_leaders

Figure 3 Block tree with rank and select support construction throughput (processed input in
MiB per second) and space requirements of the final block tree (bits per character of the input) on
repetitive inputs. The range of each x-axis depends on the compressibility of the input. Data points
for each algorithm show different configurations of τ and b, see Table 3 for more details.

Shun and Zhao [63] that requires O(n) work and O(log2 n) time.7 We also parallelized the
construction of the rank and select support with a straight-forward implementation since the
computed values are independent for each character.

We only achieve a speedup using up to 32 cores. This is most likely due to the fact that
only eight memory controllers are available, which have to be shared by 16 groups of 4 cores.
As soon as we use more than 32 cores, multiple groups have to share a controller. With 32
cores, we achieve a speedup of up to 6.64 (4.71 on average). This comes very close to the
speedups of the parallel libsais, which achieves a speedup of at most 6 (5.2 on average).
The additional speedup can be explained by the speedup thanks to the parallel construction
of the rank and select support.

7 See https://github.com/zfy0701/Parallel-LZ77, last accessed 2023-07-04.

https://github.com/zfy0701/Parallel-LZ77

D. Köppl, F. Kurpicz, and D. Meyer 87:15

1 8 64

20

40

60

80

co
ns

tr
uc

tio
n

tim
e

(s
)

cere

1 8 64
0

20

40

60

coreutils

par LPF
par BT w/o RS
par BT with RS

1 8 64

20

40

60

80

100

co
ns

tr
uc

tio
n

tim
e

(s
)

einstein.en

1 8 64

5

10

15

20

Escherichia_Coli

1 8 64

10

20

30

influenza

1 8 64

20

40

threads

co
ns

tr
uc

tio
n

tim
e

(s
)

kernel

1 8 64

20

40

60

80

threads

para

1 8 64

5

10

threads

world_leaders

Figure 4 Parallel (strong scaling) block tree construction using the configuration τ = 8 and
b = 16. Construction times of a block trees includes parallel LPF array construction time.

7 Conclusion and Future Work

The LPF array allows us to construct the block tree up to an order of magnitude faster
than using Karp-Rabin fingerprints. All tested algorithms produce the same block trees
(when using the same parameters). A simple parallelization of our algorithm results in a
speedup of up to 6.64 using 32 cores. However, the scalability of the current state of the
algorithm is mostly limited by the LPF array computation. Here, it might be interesting to
investigate a parallelization of the construction algorithm based on Karp-Rabin fingerprints
using concurrent hash tables [47]. In general, better scalability is of great interest, as
otherwise, construction speed similar to wavelet trees seems hard to achieve.

In the light that the LPF array can be represented in 2n + o(n) bits [3] with algorithms
computing this representation in compact [3] or compressed space [60], future work includes
engineering a more memory-efficient LPF array construction. Further improvements in
construction time can be obtained by introducing stricter rules for the marking of nodes in
the block tree rendering the pruning phase unnecessary. Finally, we want to compress the
block tree recursively by using block trees internally.

ESA 2023

87:16 Faster Block Tree Construction

w
/o

ra
nk

an
d

se
le

ct
su

pp
or

t

2 4 6

2

4

6

th
ro

ug
hp

ut
(M

iB
/s

)
dblp.xml

3 4 5 6

dna

4 6 8

english

5 6 7 8

2

4

6

th
ro

ug
hp

ut
(M

iB
/s

)

pitches

3.5 4 4.5 5

proteins

4 5 6 7

sources

w
it

h
ra

nk
an

d
se

le
ct

su
pp

or
t

2 4 6

1

2

3

4

th
ro

ug
hp

ut
(M

iB
/s

)

dblp.xml

3 4 5 6

dna

4 6 8

english

5 6 7 8

1

2

3

4

space (bit/n)

th
ro

ug
hp

ut
(M

iB
/s

)

pitches

3.5 4 4.5 5
space (bit/n)

proteins

4 5 6 7
space (bit/n)

sources

FP1 LPFz LPFDP
z LPFDP

1 LPF1 original BT [6]

Figure 5 Block tree construction throughput and space requirements per character of the input
on 32 MiB prefixes of the non-repetitive inputs.

D. Köppl, F. Kurpicz, and D. Meyer 87:17

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie, Evguenia Kopylova, William F. Smyth,

German Tischler, and Munina Yusufu. A comparison of index-based lempel-ziv LZ77 factoriza-
tion algorithms. ACM Comput. Surv., 45(1):5:1–5:17, 2012. doi:10.1145/2379776.2379781.

3 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in
linear time for integer alphabets. In CPM, volume 78 of LIPIcs, pages 22:1–22:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.CPM.2017.22.

4 Jérémy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich. Efficient
fully-compressed sequence representations. Algorithmica, 69(1):232–268, 2014. doi:10.1007/
S00453-012-9726-3.

5 Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Trans. Algorithms, 7(4):52:1–52:27,
2011. doi:10.1145/2000807.2000820.

6 Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen,
Gonzalo Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. Block trees. J.
Comput. Syst. Sci., 117:1–22, 2021. doi:10.1016/j.jcss.2020.11.002.

7 Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access, rank,
and select in grammar-compressed strings. In ESA, volume 9294 of Lecture Notes in Computer
Science, pages 142–154. Springer, 2015. doi:10.1007/978-3-662-48350-3_13.

8 Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Ordóñez
Pereira, Simon J. Puglisi, and Yasuo Tabei. Queries on lz-bounded encodings. In DCC, pages
83–92. IEEE, 2015. doi:10.1109/DCC.2015.69.

9 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

10 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra. A learned approach to design
compressed rank/select data structures. ACM Trans. Algorithms, 18(3):24:1–24:28, 2022.
doi:10.1145/3524060.

11 Nieves R. Brisaboa, Travis Gagie, Adrián Gómez-Brandón, and Gonzalo Navarro. Two-
dimensional block trees. In DCC, pages 227–236. IEEE, 2018. doi:10.1109/DCC.2018.00031.

12 Manuel Cáceres and Gonzalo Navarro. Faster repetition-aware compressed suffix trees based
on block trees. Inf. Comput., 285(Part):104749, 2022. doi:10.1016/J.IC.2021.104749.

13 Matteo Ceregini, Florian Kurpicz, and Rossano Venturini. Faster wavelet trees with quad
vectors. CoRR, abs/2302.09239, 2023. doi:10.48550/arXiv.2302.09239.

14 Yu-Feng Chien, Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Geometric BWT: compressed text indexing via sparse suffixes and range searching.
Algorithmica, 71(2):258–278, 2015. doi:10.1007/S00453-013-9792-1.

15 Francisco Claude, Antonio Fariña, Miguel A. Martínez-Prieto, and Gonzalo Navarro. Universal
indexes for highly repetitive document collections. Inf. Syst., 61:1–23, 2016. doi:10.1016/J.
IS.2016.04.002.

16 Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
SPIRE, volume 7608 of Lecture Notes in Computer Science, pages 180–192. Springer, 2012.
doi:10.1007/978-3-642-34109-0_19.

17 Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear time and
applications. Inf. Process. Lett., 106(2):75–80, 2008. doi:10.1016/J.IPL.2007.10.006.

18 Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian Kurpicz, and Marvin Löbel. Practical
wavelet tree construction. ACM J. Exp. Algorithmics, 26:1.8:1–1.8:67, 2021. doi:10.1145/
3457197.

19 Patrick Dinklage, Johannes Fischer, and Florian Kurpicz. Constructing the wavelet tree
and wavelet matrix in distributed memory. In ALENEX, pages 214–228. SIAM, 2020. doi:
10.1137/1.9781611976007.17.

ESA 2023

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/2379776.2379781
https://doi.org/10.4230/LIPICS.CPM.2017.22
https://doi.org/10.1007/S00453-012-9726-3
https://doi.org/10.1007/S00453-012-9726-3
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1145/2629339
https://doi.org/10.1145/3524060
https://doi.org/10.1109/DCC.2018.00031
https://doi.org/10.1016/J.IC.2021.104749
https://doi.org/10.48550/arXiv.2302.09239
https://doi.org/10.1007/S00453-013-9792-1
https://doi.org/10.1016/J.IS.2016.04.002
https://doi.org/10.1016/J.IS.2016.04.002
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1016/J.IPL.2007.10.006
https://doi.org/10.1145/3457197
https://doi.org/10.1145/3457197
https://doi.org/10.1137/1.9781611976007.17
https://doi.org/10.1137/1.9781611976007.17

87:18 Faster Block Tree Construction

20 Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and Jan-Philipp Tarnowski. Bit-parallel
(compressed) wavelet tree construction. In DCC, pages 81–90. IEEE, 2023. doi:10.1109/
DCC55655.2023.00016.

21 Jonas Ellert and Florian Kurpicz. Parallel external memory wavelet tree and wavelet matrix
construction. In SPIRE, volume 11811 of Lecture Notes in Computer Science, pages 392–406.
Springer, 2019. doi:10.1007/978-3-030-32686-9_28.

22 Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues of wavelet
trees. Inf. Comput., 207(8):849–866, 2009. doi:10.1016/J.IC.2008.12.010.

23 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An alphabet-friendly
fm-index. In SPIRE, volume 3246 of Lecture Notes in Computer Science, pages 150–160.
Springer, 2004. doi:10.1007/978-3-540-30213-1_23.

24 Paolo Ferragina, Giovanni Manzini, and Giorgio Vinciguerra. Compressing and querying
integer dictionaries under linearities and repetitions. IEEE Access, 10:118831–118848, 2022.
doi:10.1109/ACCESS.2022.3221520.

25 Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci., 372(1):115–121, 2007. doi:10.1016/J.TCS.2006.12.012.

26 Johannes Fischer, Florian Kurpicz, and Marvin Löbel. Simple, fast and lightweight par-
allel wavelet tree construction. In ALENEX, pages 9–20. SIAM, 2018. doi:10.1137/1.
9781611975055.2.

27 Frantisek Franek, Jan Holub, William F. Smyth, and Xiangdong Xiao. Computing quasi suffix
arrays. J. Autom. Lang. Comb., 8(4):593–606, 2003. doi:10.25596/JALC-2003-593.

28 José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. Parallel construction
of wavelet trees on multicore architectures. Knowl. Inf. Syst., 51(3):1043–1066, 2017. doi:
10.1007/s10115-016-1000-6.

29 Moses Ganardi, Artur Jez, and Markus Lohrey. Balancing straight-line programs. In FOCS,
pages 1169–1183. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00073.

30 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In SEA, volume 8504 of Lecture Notes in Computer
Science, pages 326–337. Springer, 2014. doi:10.1007/978-3-319-07959-2_28.

31 Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Softw.
Pract. Exp., 44(11):1287–1314, 2014. doi:10.1002/SPE.2198.

32 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In SODA, pages 368–373. ACM Press, 2006.

33 Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy of succinct
data structures. In SWAT, volume 5124 of Lecture Notes in Computer Science, pages 148–159.
Springer, 2008. doi:10.1007/978-3-540-69903-3_15.

34 Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. Practical imple-
mentation of rank and select queries. In WEA, pages 27–38, 2005.

35 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In SODA, pages 841–850. ACM/SIAM, 2003.

36 Roberto Grossi, Alessio Orlandi, and Rajeev Raman. Optimal trade-offs for succinct string
indexes. In ICALP (1), volume 6198 of Lecture Notes in Computer Science, pages 678–689.
Springer, 2010. doi:10.1007/978-3-642-14165-2_57.

37 Roberto Grossi, Jeffrey Scott Vitter, and Bojian Xu. Wavelet trees: From theory to practice.
In CCP, pages 210–221. IEEE Computer Society, 2011. doi:10.1109/CCP.2011.16.

38 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987. doi:10.1147/RD.312.0249.

39 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In STOC, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

40 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In STOC, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

https://doi.org/10.1109/DCC55655.2023.00016
https://doi.org/10.1109/DCC55655.2023.00016
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1016/J.IC.2008.12.010
https://doi.org/10.1007/978-3-540-30213-1_23
https://doi.org/10.1109/ACCESS.2022.3221520
https://doi.org/10.1016/J.TCS.2006.12.012
https://doi.org/10.1137/1.9781611975055.2
https://doi.org/10.1137/1.9781611975055.2
https://doi.org/10.25596/JALC-2003-593
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1109/FOCS.2019.00073
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1002/SPE.2198
https://doi.org/10.1007/978-3-540-69903-3_15
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1147/RD.312.0249
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814

D. Köppl, F. Kurpicz, and D. Meyer 87:19

41 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness. In LATIN, volume 12118 of Lecture Notes in Computer Science, pages 207–219.
Springer, 2020. doi:10.1007/978-3-030-61792-9_17.

42 Dominik Köppl, Gonzalo Navarro, and Nicola Prezza. HOLZ: high-order entropy encoding of
lempel-ziv factor distances. In DCC, pages 83–92. IEEE, 2022. doi:10.1109/DCC52660.2022.
00016.

43 Florian Kurpicz. pasta::block_tree_experiments. URL: https://github.com/
pasta-toolbox/block_tree_experiments, doi:10.5281/zenodo.8114299.

44 Florian Kurpicz. Engineering compact data structures for rank and select queries on bit vectors.
In SPIRE, volume 13617 of Lecture Notes in Computer Science, pages 257–272. Springer, 2022.
doi:10.1007/978-3-031-20643-6_19.

45 Florian Kurpicz and Daniel Meyer. pasta::block_tree. URL: https://github.com/
pasta-toolbox/block_tree, doi:10.5281/zenodo.8114255.

46 Julian Labeit, Julian Shun, and Guy E. Blelloch. Parallel lightweight wavelet tree, suffix array
and fm-index construction. J. Discrete Algorithms, 43:2–17, 2017. doi:10.1016/j.jda.2017.
04.001.

47 Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: Fast and
general(?)! ACM Trans. Parallel Comput., 5(4):16:1–16:32, 2019. doi:10.1145/3309206.

48 Stefano Marchini and Sebastiano Vigna. Compact fenwick trees for dynamic ranking and
selection. Softw. Pract. Exp., 50(7):1184–1202, 2020. doi:10.1002/spe.2791.

49 Daniel Meyer. Engineering block trees. Master’s thesis, Karlsruhe Institute of Technology,
2022.

50 Gonzalo Navarro. A self-index on block trees. In SPIRE, volume 10508 of Lecture Notes in
Computer Science, pages 278–289. Springer, 2017. doi:10.1007/978-3-319-67428-5_24.

51 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

52 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1):2–es, 2007. doi:10.1145/1216370.1216372.

53 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput.
Sci., 762:41–50, 2019. doi:10.1016/J.TCS.2018.09.007.

54 Gonzalo Navarro and Eliana Providel. Fast, small, simple rank/select on bitmaps. In
SEA, volume 7276 of Lecture Notes in Computer Science, pages 295–306. Springer, 2012.
doi:10.1007/978-3-642-30850-5_26.

55 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select dictio-
nary. In ALENEX. SIAM, 2007. doi:10.1137/1.9781611972870.6.

56 Mihai Pătraşcu. Succincter. In FOCS, pages 305–313. IEEE Computer Society, 2008. doi:
10.1109/FOCS.2008.83.

57 Alberto Ordóñez Pereira, Gonzalo Navarro, and Nieves R. Brisaboa. Grammar compressed
sequences with rank/select support. J. Discrete Algorithms, 43:54–71, 2017. doi:10.1016/J.
JDA.2016.10.001.

58 Giulio Ermanno Pibiri and Shunsuke Kanda. Rank/select queries over mutable bitmaps. Inf.
Syst., 99:101756, 2021. doi:10.1016/j.is.2021.101756.

59 Nicola Prezza. Optimal rank and select queries on dictionary-compressed text. In CPM,
volume 128 of LIPIcs, pages 4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.CPM.2019.4.

60 Nicola Prezza and Giovanna Rosone. Faster online computation of the succinct longest previous
factor array. In CiE, volume 12098 of Lecture Notes in Computer Science, pages 339–352.
Springer, 2020. doi:10.1007/978-3-030-51466-2_31.

61 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007. doi:10.1145/1290672.1290680.

ESA 2023

https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1109/DCC52660.2022.00016
https://doi.org/10.1109/DCC52660.2022.00016
https://github.com/pasta-toolbox/block_tree_experiments
https://github.com/pasta-toolbox/block_tree_experiments
https://doi.org/10.5281/zenodo.8114299
https://doi.org/10.1007/978-3-031-20643-6_19
https://github.com/pasta-toolbox/block_tree
https://github.com/pasta-toolbox/block_tree
https://doi.org/10.5281/zenodo.8114255
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1145/3309206
https://doi.org/10.1002/spe.2791
https://doi.org/10.1007/978-3-319-67428-5_24
https://doi.org/10.1145/3434399
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1016/J.TCS.2018.09.007
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1137/1.9781611972870.6
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1016/J.JDA.2016.10.001
https://doi.org/10.1016/J.JDA.2016.10.001
https://doi.org/10.1016/j.is.2021.101756
https://doi.org/10.4230/LIPICS.CPM.2019.4
https://doi.org/10.1007/978-3-030-51466-2_31
https://doi.org/10.1145/1290672.1290680

87:20 Faster Block Tree Construction

62 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
s00453-012-9618-6.

63 Julian Shun and Fuyao Zhao. Practical parallel lempel-ziv factorization. In DCC, pages
123–132. IEEE, 2013. doi:10.1109/DCC.2013.20.

64 Zachary Stephens, Skylar Lee, Faraz Faghri, Roy Campbell, Chengxiang Zhai, Miles Efron,
Ravishankar Iyer, Michael Schatz, Saurabh Sinha, and Gene Robinson. Big data: Astronomical
or genomical? PLoS biology, 13(7):1–11, 2015.

65 Sebastiano Vigna. Broadword implementation of rank/select queries. In WEA, volume
5038 of Lecture Notes in Computer Science, pages 154–168. Springer, 2008. doi:10.1007/
978-3-540-68552-4_12.

66 Dong Zhou, David G. Andersen, and Michael Kaminsky. Space-efficient, high-performance rank
and select structures on uncompressed bit sequences. In SEA, volume 7933 of Lecture Notes
in Computer Science, pages 151–163. Springer, 2013. doi:10.1007/978-3-642-38527-8_15.

67 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-642-38527-8_15
https://doi.org/10.1109/TIT.1977.1055714

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Block Trees
	4.1 Construction

	5 Block Tree Construction using the LPF Array
	5.1 Marking Blocks
	5.2 Identifying Leftmost Occurrences
	5.2.1 Leftmost Occurrences as Text Positions
	5.2.2 Leftmost Occurrences as Blocks

	5.3 New Block Tree Construction Algorithm

	6 Experimental Evaluation
	6.1 Sequential Block Tree Construction
	6.2 Parallel Block Tree Construction

	7 Conclusion and Future Work

