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Abstract
Given a string S of length n, its Lyndon array identifies for each suffix S[i..n] the next lexicographically
smaller suffix S[j..n], i.e. the minimal index j > i with S[i..n] � S[j..n]. Apart from its plain
(n log2 n)-bit array representation, the Lyndon array can also be encoded as a succinct parentheses
sequence that requires only 2n bits of space. While linear time construction algorithms for both
representations exist, it has previously been unknown if the same time bound can be achieved with
less than Ω(n lgn) bits of additional working space. We show that, in fact, o(n) additional bits are
sufficient to compute the succinct 2n-bit version of the Lyndon array in linear time. For the plain
(n log2 n)-bit version, we only need O(1) additional words to achieve linear time. Our space efficient
construction algorithm makes the Lyndon array more accessible as a fundamental data structure in
applications like full-text indexing.
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1 Introduction & Related Work

The Lyndon array [5] is a well-known combinatorial object on strings and has gained renewed
attention [6, 7, 14, 18, 19, 23] due to its recently discovered central role in combinatorics
on strings, e.g., when computing all the runs in a string [2]. It is known [18, 13] that the
Lyndon array can be computed in linear time from the list of lexicographically sorted suffixes
(the suffix array). Baier [1] introduced the first direct algorithm for computing the Lyndon
array – interestingly as a preliminary step for his new suffix sorting algorithm. However, it
requires Θ(n lgn) bits of additional working space even for just computing the Lyndon array.
Other Lyndon array construction algorithms have been introduced [13, 19, 20], but they all
have the same space bounds.

The Lyndon array has some structural properties that allow for a more space efficient
representation, namely using only 2n+ 2 bits [19]. Thus, it would be desirable to compute
this succinct representation using less than Θ(n lgn) bits of working space, without sacrificing
the linear running time. Previously, no such algorithm was known.

Our Contributions. We introduce the first algorithm that computes the succinct Lyndon
array inO(n) time, using onlyO(n lg lgn/ lgn) bits of additional working space. Alternatively,
our algorithm can construct the plain (O(n lgn)-bits) Lyndon array using only O(1) words
of additional working space, i.e., directly without precomputing the suffix array. In practice,
our approach is up to 10 times faster than previous algorithms for the Lyndon array.

The rest of the paper is organized as follows: In ?? we introduce the notation and
definitions that we use throughout the paper. Section 3 provides a new intuitive definition of
the succinct Lyndon array. We introduce our construction algorithm for the succinct Lyndon
array in ?? and Section 5, and adapt it such that it computes the plain (O(n lgn)-bits)
Lyndon array in ??. Finally, we present experimental results for both versions (??), and
summarize our findings (??).

2 Preliminaries

We write lg x for log2 x. For i, j ∈ N, the interval [i, j] represents {x | x ∈ N ∧ i ≤ x ≤ j}.
We use the notation [i, j + 1) = (i − 1, j] = (i − 1, j + 1) = [i, j] for open and half-open
discrete intervals. Our analysis is performed in the word RAM model [17], where we can
perform fundamental operations (logical shifts, basic arithmetic operations etc.) on words of
size w bits in constant time. For the input size n of our problems we assume dlgne ≤ w.

A string (also called text) over the alphabet Σ is a finite sequence of symbols from the
finite and totally ordered set Σ. We say that a string S has length n and write |S| = n, iff S
is a sequence of exactly n symbols. The i-th symbol of a string S is denoted by S[i], while
the substring from the i-th to the j-th symbol is denoted by S[i..j]. For convenience we use
the interval notations S[i..j + 1) = S(i− 1..j] = S(i− 1..j + 1) = S[i..j]. The i-th suffix of
S is defined as Si = S[i..n], while the substring S[1..i] is called prefix of S. A prefix or suffix
of S is called proper, iff its length is at most n− 1. The concatenation of two strings S and
T is denoted by S · T . The length of the longest common prefix (LCP) between S and T is
defined as lcp(S, T ) = max{` | S[1..`] = T [1..`]}. The longest common extension (LCE) of
indices i and j is the length of the LCP between Si and Sj , i.e. lce(i, j) = lcp(Si,Sj). We
can simplify the description of our algorithm by introducing a special symbol $ /∈ Σ that is
smaller than all symbols from Σ. For a string S of length n we define the 0-th suffix S0 = $
as well as the (n + 1)-st suffix and position Sn+1 = S[n + 1] = $. The total order on Σ
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induces a total order on the set Σ∗ of strings over Σ. Let S and T be strings over Σ, and let
` = lcp(S, T ). We say that S is lexicographically smaller than T and write S ≺ T , iff we
have S 6= T and S[`+ 1] < T [`+ 1]. Analogously, we say that S is lexicographically larger
than T and write S � T , iff we have S 6= T and S[`+ 1] > T [`+ 1].

2.1 The Lyndon Array & Nearest Smaller Suffixes
A Lyndon word is a string that is lexicographically smaller than all of its proper suffixes, i.e.
S is a Lyndon word, iff ∀i ∈ [2..n] : Si � S holds [8]. For example, the string northamerica
is not a Lyndon word because its suffix america is lexicographically smaller than itself. On
the other hand, its substring americ is a Lyndon word. The Lyndon array of S identifies
the longest Lyndon word at each position of S:

I Definition 1 (Lyndon Array). Given a string S of length n, the Lyndon array is an array
λ of n integers with λ[i] = max{` | S[i..i+ `) is a Lyndon word}.

I Definition 2 (Nearest Smaller Suffixes). Given a string S and a suffix Si, the next smaller
suffix of Si is Sj, where j is the smallest index that is larger than i and satisfies Si � Sj.
The previous smaller suffix of Si is defined analogously. The next-smaller-suffix array (NSS
array) and previous-smaller-suffix array (PSS array) are arrays of size n defined as follows:

nss[i] = min{j | j ∈ (i, n+ 1] ∧ Si � Sj} pss[i] = max{j | j ∈ [0, i) ∧ Sj ≺ Si}

The Lyndon array and nearest smaller suffixes are highly related to each other. In fact, the
NSS array is merely a different representation of the Lyndon array (Lemma 3), as visualized
in Figure 1a. We conclude the preliminaries by showing a slightly weaker connection between
the PSS array and Lyndon words (Lemma 4).

I Lemma 3 (Lemma 15 [13]). The longest Lyndon word at position i ends at the starting
position of the NSS of Si, i.e. λ[i] = nss[i]− i.

I Lemma 4. Let pss[j] = i > 0, then S[i..j) is a Lyndon word.

Proof. By definition, the string S[i..j) is a Lyndon word iff there exists no k ∈ (i, j) with
S[k..j) ≺ S[i..j). Assume that such a k exists. Since i = pss[j], we know that (a) Sk � Si.
Now assume there is a mismatching character between S[k..j) and S[i..j). Then appending
Sj to both strings preserves this mismatch. This implies that we have S[k..j) ≺ S[i..j)⇐⇒
S[k..j) · Sj ≺ S[i..j) · Sj , and thus Sk ≺ Si, which contradicts (a). Therefore, we know that
(b) S[k..j) = S[i..i+ (j − k)). Then

Sk
(a)
� Si ⇐⇒ S[k..j) · Sj � S[i..i+ (j − k)) · Si+(j−k)

(b)⇐⇒ Sj � Si+(j−k)

which contradicts the fact that pss[j] = i < i+ (j − k). Hence, the described k cannot exist,
and S[i..j) must be a Lyndon word. J

3 Previous-Smaller-Suffix Trees

In this section we introduce the previous-smaller-suffix tree, which simulates access to the
Lyndon array, the NSS array, and the PSS array. The PSS array inherently forms a tree in
which each index i is represented by a node whose parent is pss[i]. The root is the artificial
index 0, which is parent of all indices that do not have a PSS (see Figure 1b for an example).

ICALP 2020



14:4 Space Efficient Construction of Lyndon Arrays in Linear Time

1 2 3 4 5 6 7 8 9 10 11 12
S = n o r t h a m e r i c a
λ = 4 3 2 1 1 6 1 3 1 1 1 1

nss = 5 5 5 5 6 12 8 11 10 11 12 13

n o r t
o r t

r t
t

h
a m e r i c

m
e r i

r
i

c
a

(a) Lyndon array, NSS array, and maximal
Lyndon words at all indices of S.

1 2 3 4 5 6 7 8 9 10 11 12
S = n o r t h a m e r i c a

pss = 0 1 2 3 0 0 6 6 8 8 6 0

0
$ 1

n
5
h

6
a

12
a2

o
7
m

8
e

11
c3

r
9
r

10
i4

t
0
(

1
(

2
(

3
(

4
() ) ) )

5
()

6

(
7

()
8

(
9

()
10

() )
11

() )
12
() )

(b) PSS array, PSS tree, and BPS representation of the
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Figure 1 Data structures for S = northamerica.

I Definition 5 (Previous-Smaller-Suffix Tree Tpss). Let S be a string of length n. The previous-
smaller-suffix tree (PSS tree) of S is an ordinal tree Tpss with nodes [0, n] and root 0. For
i ∈ [1, n], we define Parent(i) = pss[i]. The children are ordered ascendingly, i.e. if i is a
left-side sibling of j, then i < j holds.

The PSS tree is highly similar to the Left-to-Right-Minima (LRM) tree [3, 9, 22], which
we will briefly explain now. Given an array A[1, n] with artificial minimum A[0] = −∞, let
psv[i] = max{j | j ∈ [0, i) ∧A[j] < A[i]} be the index of the previous smaller value (PSV) of
A[i]. The LRM tree of A is an ordinal tree in which each index i is a child of psv[i], and the
children are ordered ascendingly (i.e. the only difference to the PSS tree is that we consider
previous smaller values instead of previous smaller suffixes). If A is the inverse suffix array of
S, then by definition of the inverse suffix array we have ∀i, j ∈ [1, n] : Si ≺ Sj ⇔ A[i] < A[j].
It follows that the PSS tree of a string is identical to the LRM tree of its inverse suffix array.
Consequently, an important property of the LRM tree also applies to the PSS tree:

I Corollary 6 (Lemma 1 [9]). The nodes of the PSS tree directly correspond to the preorder-
numbers, i.e. node i has preorder-number i (if the first preorder-number is 0).

The corollary allows us to simulate the NSS array with the PSS tree:

I Lemma 7. Given the PSS tree, NSS array and Lyndon array of the same string we have
nss[i] = i+ SubtreeSize(i) and thus λ[i] = SubtreeSize(i).1

Proof. Since the nodes directly correspond to the preorder-numbers (Corollary 6), it follows
that the descendants of i form a consecutive interval (i, r]. Since i + SubtreeSize(i) =
i+ (r − i+ 1) = r + 1 holds, we only have to show nss[i] = r + 1. Assume r = n, then there
is no index larger than i that is not a descendant of i. Clearly, in this case i does not have an
NSS, and thus it follows nss[i] = n+ 1 = r + 1. Assume r < n instead, then Sr+1 must be
lexicographically smaller than all suffixes that begin at positions from [i, r], since otherwise
r + 1 would be a descendant of i. Therefore, Sr+1 is the first suffix that starts right of i and
is lexicographically smaller than Si, which means nss[i] = r + 1. J

1 SubtreeSize(i) denotes the number of nodes in the subtree that is rooted in i, including i itself
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3.1 Storing the PSS Tree as a BPS
We store the PSS tree as a balanced parentheses sequence (BPS, [21]) of length 2n+ 2, which
takes 2n+ 2 bits. Note that this is less than the ≈ 2.54n bits that are necessary to encode
previous and next smaller values [10] because different suffixes of a text cannot be equal. As a
shorthand for the BPS of the PSS tree we write Bpss. The sequence is algorithmically defined
by a preorder-traversal of the PSS tree, where we write an opening parenthesis whenever we
walk down an edge, and a closing one whenever we walk up an edge. An example is provided
in Figure 1b. Note that the BPS of the PSS tree is identical to the succinct Lyndon array
presentation from [19]. While the BPS itself does not support fast tree operations, it can
be used to construct the data structure from [22], which takes O(n) time and O(n) bits of
working space. This data structure is of size 2n +O(n/ lgc n) bits (for any c ∈ N+ of our
choice) and supports Parent(·) and SubtreeSize(·) operations in O(c2) time, and thus
allows us to simulate access to the Lyndon array in O(c2) time using Lemma 7.

Operations on a BPS Prefix. Since we will be building Bpss from left to right, at any given
point of the algorithm execution we know a prefix of Bpss. It is crucial that we maintain
support for the following queries in constant time:

Given the index oi of an opening parenthesis in Bpss, determine the node i that belongs
to the parenthesis. We have i = rankopen(oi) − 1, where rankopen(oi) is the number of
opening parentheses in Bpss[1..oi].
Given a preorder-number i, find the index oi of the corresponding opening parenthesis in
Bpss. We have oi = selectopen(i) = min{o | rankopen(o) > i}.
Given an integer k ≥ 1, find the index ouncl(k) = selectuncl(k) of the k-th unclosed
parenthesis in Bpss. An opening parenthesis is called unclosed, if we have not written
the matching closing parenthesis yet. For example, there are five opening parentheses in
(()((), but only the first and the third one are unclosed.

There are support data structures of size O(n lg lgn/ lgn) bits that answer rankopen and
selectopen queries in constant time [16]. Since these data structures can be constructed in
linear time by scanning the BPS from left to right, clearly we can maintain them with no
significant time overhead when writing the BPS in an append-only manner. The structure for
selectuncl is a simple modification of the structure for selectopen. Consider the (not necessarily
balanced) parentheses sequence B̂ with B̂[i] = (, iff Bpss[i] is an unclosed parenthesis, and
otherwise B̂[i] = ). Clearly, answering selectuncl on Bpss is equivalent to answering selectopen
on B̂. Thus, if we construct the selectopen data structure by Golynski [16, Section 2.1] for B̂,
then we already have a working index for selectuncl on Bpss. However, this approach comes at
the cost of additional 2n bits of space because we need to explicitly store B̂. In the following
paragraph, we outline how to modify the index such that queries can be answered directly
on Bpss, i.e. without B̂. The reader should be familiar with [16, Section 2.1].

Assume that we want to answer selectopen(i) on B̂. Golynski’s index conceptually splits
B̂ into chunks of size lgn − 3 lg lgn. At the time we actually need to access B̂, we have
already identified the chunk Ĉ = B̂[cx..cx + lgn− 3 lg lgn) and the value p such that the i-th
opening parenthesis in B̂ is exactly the p-th opening parenthesis in Ĉ. Answering the query
is realized by simply retrieving the index j of the p-th opening parenthesis within Ĉ from
a precomputed lookup table. Then, the result of the query is cx + j − 1. We can answer
the query without B̂, if we retrieve the chunk C = Bpss[cx..cx + lgn− 3 lg lgn) directly from
Bpss (instead of retrieving the chunk Ĉ from B̂). We only need to change the precomputed

ICALP 2020
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Figure 2 The partial PSS tree before and after processing index 11 of S = northamerica during
the execution of Algorithm 1. We have p1 = 10, p2 = 8, p3 = 6, p4 = 0, and pm = p3. (Best viewed
in color.)

lookup table such that it returns the index of the p-th unclosed parenthesis within the chunk
instead of the index of the p-th opening parenthesis.

Appending parentheses to Bpss may invalidate parts of the support data structure for
selectuncl. The reason for this is that we essentially emulate selectuncl on Bpss by answering
selectopen on B̂. Appending a closing parenthesis to Bpss not only translates to appending
a closing parenthesis to B̂, but also means that we have to replace the rightmost opening
parenthesis in B̂ with a closing one. Thus, we may have to change previously computed
parts of the support data structure. This can easily be handled without significant time
overhead by only periodically updating the data structure, and naively keeping track of
newly appended parentheses in between updates. We omit the details.

4 Constructing the PSS Tree

In this section we introduce our construction algorithm for the BPS of the PSS tree, which
processes the indices of the input text in left-to-right order. Processing index i essentially
means that we attach i to a partial PSS tree that is induced by the nodes from [0, i). An
example is provided in Figure 2a. But how can we efficiently determine pss[i], which is i’s
parent? Consider the nodes on the rightmost path of the partial tree, which starts at i− 1
and ends at the root 0. We call the set of these nodes PSS closure Pi−1 of i− 1 because it
contains exactly the nodes that can be obtained by repeated application of the PSS function
on i− 1. For j ∈ [1, n] we recursively define P0 = {0} and Pj = {j} ∪ Ppss[j]. Interestingly,
pss[i] is a member of Pi−1:

I Lemma 8. For any index i ∈ [1, n] we have pss[i] = max{j | j ∈ Pi−1 ∧ Sj ≺ Si}.

Proof. If we show pss[i] ∈ Pi−1, then the correctness of the lemma follows from Definition 2.
Assume pss[i] /∈ Pi−1, then there is some index j ∈ Pi−1 with pss[i] ∈ (pss[j], j). By
Definition 2, this implies Spss[i] � Sj . However, we also have j ∈ (pss[i], i), which leads to
the contradiction Spss[i] ≺ Sj . J

Let p1 = i − 1, p2, . . . , pk = 0 be the elements of Pi−1 in descending order, then it follows
from Lemma 8 that there is some m ∈ [1, k] with pss[i] = pm, i.e. node i has to become a
child of pm in the partial PSS tree. In terms of the BPS, we have to append m− 1 closing
parentheses to the BPS prefix. Then, we can simply write the opening parenthesis of node i.
Once again, an example is provided in Figure 2b.
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Algorithm 1 BuildPssBps

Input: String S of length n
Output: BPS of the PSS Tree of S
1: Bpss ← ( . Open node 0
2: for i = 1 to n do
3: Let Pi−1 = {p1, . . . , pk} with pss[px] = px+1
4: Determine pm = pss[i]
5: Append m− 1 closing parentheses to Bpss . Close nodes p1, . . . , pm−1
6: Append one opening parenthesis to Bpss . Open node i
7: Append |Pn| closing parentheses to Bpss . Close rightmost path

Our construction algorithm for Bpss is based on this simple idea, as outlined by Algorithm 1.
Initially, the BPS only contains the opening parenthesis of the root 0 (line 1). Then, whenever
we process an index i, we use Pi−1 to determine pm (lines 3–4) and extend Bpss by appending
m− 1 closing parentheses and one opening one (lines 5–6). Finally, once all nodes have been
added to the PSS tree, we only have to close all remaining unclosed parentheses (line 7). The
algorithm has two black boxes: How do we determine Pi−1 (line 3), and how do we use it to
find pm (line 4)? The first question is easily answered, since the operations that we support
on the BPS prefix at all times (see Section 3.1) are already sufficient to access each element
of Pi−1 in constant time. Let p1, . . . , pk be exactly these elements in descending order. As
explained earlier, they directly correspond to the unclosed parentheses of the BPS prefix,
such that pk corresponds to the leftmost unclosed parenthesis, and p1 to the rightmost one.
Therefore, we have px = rankopen(selectuncl(k − x+ 1))− 1. It remains to be shown how to
efficiently find pm.

4.1 Efficiently Computing pm

Consider the following naive approach for computing pm: Iterate over the indices p1, . . . , pk
in descending order (i.e. p1 first, pk last). For each index px, evaluate whether Spx ≺ Si holds.
As soon as this is the case, we have found pm. The cost of this approach is high: A naive
suffix comparison between Spx and Si takes lce(px, i) + 1 individual character comparisons,
which means that we spend O(m+

∑m
x=1 lce(px, i)) time to determine m. However, the

following property will allow us to decrease this time bound significantly:

I Corollary 9 (Bitonic LCE Values). Let p1, . . . , pk be exactly the elements of Pi−1 in de-
scending order and let pm = pss[i]. Furthermore, let `x = lce(px, i) for all x ∈ [1, k]. We
have `1 ≤ `2 ≤ · · · ≤ `m−1 as well as `m ≥ `m+1 ≥ · · · ≥ `k.

Proof. Follows from Sp1 � . . . � Spm−1 � Si � Spm � . . . � Spk and simple properties of
the lexicographical order. J

From now on, we continue using the notation `x = lce(px, i) from the corollary. Note that
the longest LCE between i and any of the px occurs either with pm or with pm−1. Let
`max = max(`m−1, `m) be this largest LCE value, then our more sophisticated approach for
determining m only takes O(m+ `max) time. It consists of two steps: First, we determine a
candidate interval (u,w] ⊆ [1, k] of size at most `max that contains m. In the second step we
gradually narrow down the borders of the candidate interval until the exact value of m is
known.

ICALP 2020
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Si =

Sp1 = α

Sp|α|+2 = β

Sp|α|+|β|+3 = γ

Sp|α|+|β|+|γ|+4 = δ

Si =

Spu = γ

Spu+1 =
Spu+2 =
Spu+3 =

...

Spw−3 =
Spw−2 =
Spw−1 =
Spw = δ

Si =

Figure 3 Matching character comparisons when determining pm. On the left we have the
suffix Si as well as Sp1 ,Sp2 , . . . ,Spw , which are relevant for the first step. Each prefix α, β, γ, δ
highlights the LCP between the respective suffix Spx and Si. On the right side we have the suffixes
Spu ,Spu+1 , . . . ,Spw , which are relevant for the second step. (Best viewed in color.)

Step 1: Find a candidate interval. Our goal is to find (u,w] = (u, u+ `u + 1] with m ∈
(u,w]. Initially, we naively compute `1 = lce(p1, i), allowing us to evaluate Sp1 ≺ Si
in constant time. If this holds, then we have m = 1 and no further steps are necessary.
Otherwise, let u← 1 and (i) let w ← u+ `u + 1. We already know that u < m holds. Now
we have to evaluate if m ≤ w also holds. Therefore, we compute `w = lce(pw, i) naively,
which allows us to check in constant time if Spw ≺ Si and decide if m ≤ w holds. If this
is not the case, then we assign u ← w as well as `u ← `w and continue at (i). If however
Spw ≺ Si holds, then we have m ≤ w and therefore m ∈ (u,w]. Figure 3 (left) outlines the
procedure.

Step 2: Narrow down (u, w] to the exact value of m. Now we gradually tighten the
borders of the candidate interval. If `u is smaller than `w, then we try to increase u by one.
Otherwise, we try to decrease w by one.

Assume that we have `u < `w, then it follows from Corollary 9 that `u+1 ≥ `u holds.
Therefore, when computing `u+1 we can simply skip the first `u character comparisons. Now
we use `u+1 to evaluate in constant time if Spu+1 � Si holds. If that is the case, then we have
u+ 1 < m and thus we can assign u← u+ 1 and start Step 2 from the beginning. If however
Spu+1 ≺ Si holds, then we have m = u + 1 and no further steps are necessary. In case of
`u ≥ `w we proceed analogously. Once again, Figure 3 (right) visualizes the procedure.

Time Complexity. Step 1 is dominated by computing LCE values. Determining the final
LCE value `w takes `w+1 individual character comparisons and thus Θ(`w+1) time. Whenever
we compute any previous value of `w, we increase w by `w + 1 afterwards. Therefore, the
time for computing all LCE values is bound by Θ(w + `w) = Θ(u+ `u + `w) ⊆ O(m+ `max).
Since initially (u,w] has size at most `max, we call Step 2 at most O(`max) times. With every
call we increase `u or `w by exactly the number of matching character comparisons that we
perform. Therefore, the total number of matching character comparisons is bound by 2`max.
Thus, the total time needed for Step 2 is bound by O(`max). In sum, processing index i takes
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O(m+ `max) time. For the total processing time of all indices (and thus the execution time
of Algorithm 1) we get:

n∑
i=1
O(

m︷ ︸︸ ︷
|Pi−1 ∩ [pss[i], i]| ) +

n∑
i=1
O(

`max︷ ︸︸ ︷
maxpx∈Pi−1lce(px, i) )

= O(n) + O(n2)

(The O(m)-terms sum to O(n) since m− 1 is exactly the number of closing parentheses that
we write while processing i, and there are exactly n+1 closing parentheses in the entire BPS.)
As it appears, the total time bound of the algorithm is still far from linear time. However, it
is easy to identify the crucial time component that makes the algorithm too expensive. From
now on we call the O(m) term of the processing time negligible, while the O(`max) term is
called critical.

Clearly, if we could somehow remove the critical terms, we would already achieve linear
time. There exists a variety of data structures that could help us to achieve this goal by
accelerating suffix comparisons, e.g. the (compressed or sparse) suffix tree, the (compressed)
suffix array, or dedicated data structures for fast LCE queries. However, all of theses data
structures either require more than O(n) bits of construction space, or more than O(n)
construction time, or they are non-deterministic, or their efficiency depends on the alphabet
or the compressability of the text. For example, there exists a linear time construction
algorithm for the sparse suffix tree [15], but it is non-deterministic. This motivates the
techniques that we describe in the following sections, which directly remove the critical terms
without relying on any of the aforementioned data structures. This way, the execution time
of Algorithm 1 decreases to O(n), while the additional working space remains unchanged.

5 Achieving Linear Time

The critical time component for processing index i is `max = maxpx∈Pi−1lce(px, i). When
processing i with the technique from Section 4.1, we inherently find out the exact value of
`max, and we also discover the index pmax for which we have lce(pmax, i) = `max. From now
on, we simply use ` = `max and j = pmax. While discovering a large LCE value ` is costly, it
yields valuable structural information about the input text: There is a repeating substring of
length ` with occurrences S[j..j+ `) and S[i..i+ `). Intuitively, there is also a large repeating
structure in the PSS tree, and consequently a repeating substring in Bpss. This motivates the
techniques shown in this section, which conceptually alter Algorithm 1 as follows: Whenever
we finish processing an index i with critical cost `, we skip the next Ω(`) iterations of the
loop by simply extending the BPS prefix with the copy of an already computed part, which
means that the amortized critical cost per index becomes constant.

Depending on j and ` we choose either the run extension (Section 5.1) or the amortized
look-ahead (Section 5.2) to perform the extension. Algorithm 2 outlines our final construction
algorithm on a higher level, and complements the written description by showing when the
special cases arise. Before going into detail, we point out that S[j..i) is a Lyndon word. As
mentioned earlier, it follows from Corollary 9 that j equals pm or pm−1. Since i is the first
node that is not a descendant of pm−1, we have nss[pm−1] = i. Therefore, if j = pm−1 holds,
we have nss[j] = i, which by definition implies that S[j..i) is a Lyndon word. If however
j = pm = pss[i] holds, then S[j..i) is a Lyndon word because of Lemma 4.
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Algorithm 2 BuildPssBpsLinear

Input: String S of length n
Output: BPS of the PSS Tree of S
1: Bpss ← (
2: for i = 1 to n do
3: Let Pi−1 = {p1, . . . , pk} with pss[px] = px+1

4: Determine pm = pss[i],
using the technique from Section 4.1, causing critical cost ` and
discovering the index j with lce(j, i) = ` as described in the
beginning of Section 5.

5: Append m− 1 closing parentheses to Bpss
6: Append one opening parenthesis to Bpss

(For any x, let ox be the opening parenthesis of node x.)

7: if ` ≥ 2(i− j) then

8: Apply the run extension as described in Section 5.1.
Let t = b`/(i− j)c + 1. Take Bpss(oj ..oi] and append it (t − 2)
times to Bpss. Continue in line 2 with i← i+ (t− 2) · (i− j).

9: else

10: Apply the amortized look-ahead as described in Section 5.2.
Using Lemma 13, find the largest value χ ∈ [1, b`/4c] that sat-
isfies Bpss[oj ..oj+χ−1] = Bpss[oi..oi+χ−1], and append a copy of
Bpss(oj ..oj+χ−1] to Bpss. Continue in line 2 with i ← i + χ. If
χ < b`/4c, then iteration i+ χ will automatically skip additional
Ω(`) iterations by using the run extension.

11: Append |Pn| closing parentheses to Bpss

5.1 Run Extension

We apply the run extension iff we have ` ≥ 2(i − j). It is easy to see that in this case
S[j..j+ `) and S[i..i+ `) overlap such that the Lyndon word µ = S[j..i) repeats itself at least
three times, starting at index j. We call the substring S[j..i+ `) Lyndon run with period |µ|.
The number of repetitions is t = b`/ |µ|c+ 1 ≥ 3, and the starting positions of the repetitions
are r1, . . . , rt with r1 = j, r2 = i, and generally rx = rx−1 + |µ|. In a moment we will show
that in this particular situation the following lemma holds:

I Lemma 10. Let ox be the index of the opening parenthesis of node x in Bpss. Then we
have Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ] = · · · = Bpss[ort−1 ..ort ].

Expressed less formally, each repetition of µ— except for the last one — induces the same
substring in the BPS. Performing the run extension is as easy as taking the already written
substring Bpss(or1 ..or2 ] = Bpss(oj ..oi], and appending it t− 2 times to Bpss. Afterwards, the
last parenthesis that we have written is the opening parenthesis of node rt, and we continue
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the execution of Algorithm 1 with iteration rt + 1. Thus, we have skipped the processing of
rt − i indices. Since

rt − i = (t− 2) · |µ| ≥ (t− 2) · |µ|
t · |µ|

· ` ≥ 1
3 · ` = Ω(`) ,

it follows that the average critical cost per index from [i, rt] is constant.

Proving the Lemma. It remains to be shown that Lemma 10 holds. It is sufficient to prove
the correctness for t = 3, since the correctness for the general case follows by repeatedly
applying the lemma with t = 3. Therefore, we only have to show Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ].

Isomorphic Subtrees. Since µ is a Lyndon word, it is easy to see that the suffixes at the
starting positions of repetitions are lexicographically smaller than the suffixes that begin
in between the starting positions of repetitions, i.e. we have ∀x ∈ (r1, r2) : Sr1 ≺ Sx and
∀x ∈ (r2, r3) : Sr2 ≺ Sx. Consequently, the indices from (r1, r2) are descendants of r1 in the
PSS tree, and the indices from (r2, r3) are descendants of r2 in the PSS tree, i.e. each of the
intervals [r1, r2) and [r2, r3) induces a tree.

Next, we show that these trees are actually isomorphic. Clearly, the tree induced by
[r1, r2) solely depends on the lexicographical order of suffixes that begin within [r1, r2),
and the tree induced by [r2, r3) solely depends on the lexicographical order of suffixes that
begin within [r2, r3). Assume that the trees are not isomorphic, then there must be a suffix
comparison that yields different results in each interval, i.e. there must be offsets a, b ∈ [0, |µ|)
with a 6= b such that Sr1+a ≺ Sr1+b ⇐⇒ Sr2+a � Sr2+b holds. However, this is impossible,
as shown by the lemma below.

I Lemma 11. For all a, b ∈ [0, |µ|) with a 6= b we have Sr1+a ≺ Sr1+b ⇐⇒ Sr2+a ≺ Sr2+b.

Proof. Assume w.l.o.g. a < b, and let a′ = a + 1 and b′ = b + 1. We can show that the
strings µa′ · µ and µb′ · µ have a mismatch:

µ =

1
↓
a′

↓
b′

↓

µ

a′+|µb′ |
↓
|µ|
↓

µa′ · µ = µa′ µ

µb′ µ

µb′ · µ = µb′ µ

Consider the two hatched areas in the drawing above. The top area highlights the suffix
µa′+|µb′ | of µ, which has length c = |µ| − (a′ + |µb′ |) + 1. The bottom area highlights the
prefix µ[1..c] of µ. Since µ is a Lyndon word, there is no proper non-empty suffix of µ that is
also a prefix of µ. It follows that the hatched areas cannot be equal, i.e. µa′+|µb′ | 6= µ[1..c].
This guarantees a mismatch between µa′ · µ and µb′ · µ. Therefore, appending an arbitrary
string to µa′ · µ and µb′ · µ does not influence the outcome of a lexicographical comparison.
The statement of the lemma directly follows by appending Sr3 and Sr4 respectively:

µa′ · µ ≺ µb′ · µ ⇐⇒ µa′ · µ · Sr3︸ ︷︷ ︸
= Sr1+a

≺ µb′ · µ · Sr3︸ ︷︷ ︸
= Sr1+b

⇐⇒ µa′ · µ · Sr4︸ ︷︷ ︸
= Sr2+a

≺ µb′ · µ · Sr4︸ ︷︷ ︸
= Sr2+b

. J
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µ

r1

r2 − 1
µ

r2

r3 − 1

r3

(a) Increasing run.

pss[r1]

µ

r1

r2 − 1

µ

r2

r3 − 1

r3

(b) Decreasing run.

Figure 4 The run of the Lyndon word µ = S[r1, r2) = S[r2, r3) = S[r3, r3+|µ|) induces isomorphic
subtrees in the PSS tree. If Sr1 ≺ Sr2 , then the roots of the subtrees form a chain (a). Otherwise,
they are siblings (b).

Finally, we show that in the PSS tree the induced isomorphic trees are connected in a
way that ultimately implies Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ]. There are two possible scenarios
for this connection, which depend on the so called direction of the Lyndon run. We call a
run increasing iff Sr1 ≺ Sr2 holds, and decreasing otherwise.

Increasing Runs. First, we focus on increasing runs. It follows from Sr1 ≺ Sr2 ⇐⇒
µ · Sr2 ≺ µ · Sr3 ⇐⇒ Sr2 ≺ Sr3 that Sr1 ≺ Sr2 ≺ Sr3 . Since µ is a Lyndon word, we have
∀x ∈ (r1, r2) : Sr2 ≺ Sx as well as ∀x ∈ (r2, r3) : Sr3 ≺ Sx. Therefore, we have pss[r2] = r1
and pss[r3] = r2, and the isomorphic subtrees are connected as visualized in Figure 4a. It is
easy to see that a preorder-traversal from r1 to r2 yields the same sequence of parentheses
as a preorder-traversal from r2 to r3. Therefore we have Bpss[or1 ..or2 ] = Bpss[or2 ..or3 ], which
means that Lemma 10 holds for increasing runs.

Decreasing Runs. With the same argument as for increasing runs, we have Sr1 � Sr2 � Sr3

in decreasing runs. We also have ∀x ∈ (r1, r2) : Sr2 ≺ Sx as well as ∀x ∈ (r2, r3) : Sr3 ≺ Sx,
which means that pss[r2] ≤ pss[r1] and pss[r3] ≤ pss[r1] hold. In Lemma 12 we will show
that in fact pss[r1] = pss[r2] = pss[r3] holds, such that the isomorphic subtrees are connected
as visualized in Figure 4b. A preorder-traversal from r1 to r2 yields the same sequence
of parentheses as a preorder-traversal from r2 to r3. Therefore we have Bpss[or1 ..or2 ] =
Bpss[or2 ..or3 ], which means that Lemma 10 holds for decreasing runs.

I Lemma 12. In decreasing runs we have pss[r1] = pss[r2] = pss[r3].

Proof. As explained previously, we have pss[r2] ≤ pss[r1] and pss[r3] ≤ pss[r1], and thus only
need to show Spss[r1] ≺ Sr2 and Spss[r1] ≺ Sr3 . We will show below that µ cannot be a prefix
of Spss[r1], from which the statement of the lemma can be deduced easily since the suffixes
Sr2 and Sr3 begin with the prefix µ. Assume for the sake of contradiction that µ is a prefix
of Spss[r1]. If we also assume pss[r1] + |µ| > r1, we get:

S =

pss[r1]
↓

µ

r1
↓

pss[r1]+|µ|
↓

µ

As indicated by the hatched area, this implies that there is a proper non-empty suffix of µ
that is also a prefix of µ, which is impossible because µ is a Lyndon word. Thus we have
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pss[r1] + |µ| ≯ r1. Also, we cannot have pss[r1] + |µ| = r1, because then pss[r1] would be
the starting position of another repetition of µ, which would imply Spss[r1] � Sr1 . It follows
pss[r1] + |µ| < r1, i.e. pss[r1] + |µ| ∈ (pss[r1], r1) and thus Spss[r1]+|µ| � Sr1 . However, this
leads to a contradiction:

Spss[r1] ≺ Sr1 ⇐⇒ µ · Spss[r1]+|µ| ≺ µ · Sr2

⇐⇒ Spss[r1]+|µ| ≺ Sr2

=⇒
Sr1�Sr2

Spss[r1]+|µ| ≺ Sr1 J

5.2 Amortized Look-Ahead
Finally, we show how to amortize the critical cost O(`) of processing index i if the run
extension is not applicable, i.e. if we have ` < 2(i − j). Unfortunately, the trees induced
by the nodes from [j, j + `) and [i, i+ `) are not necessarily isomorphic. However, we can
still identify a sufficiently large isomorphic structure. In a moment we will show that the
following lemma holds:

I Lemma 13. Let ox be the index of the opening parenthesis of node x in Bpss. We
either have Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1], or there is an integer χ < b`/4c with
Bpss[oj ..oj+χ−1] = Bpss[oi..oi+χ−1] and an index h ∈ [i, i+χ) such that S[h..i+`) is a Lyndon
run of the Lyndon word S[h..i+χ). We can determine which case applies, and also determine
the value of χ (if applicable) in O(`) time and O(1) words of additional space.

When performing the amortized look-ahead we first determine which case of the lemma
applies. Then, if Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1], we extend the known prefix of the
BPS by appending a copy of Bpss[oj ..oj+b`/4c−1], and continue the execution of Algorithm 1
with iteration i+ b`/4c. Since this way we skip the processing of b`/4c − 1 = Ω(`) indices,
the average critical cost per index from [i, i + b`/4c) is constant. If, however, the second
case applies, then we determine the value of χ and extend the known prefix of the BPS by
appending a copy of Bpss[oj ..oj+χ−1], allowing us to continue the execution of Algorithm 1
with iteration i+χ. We know that there is some h ∈ [i, i+χ) such that S[h..i+`) is a Lyndon
run of the Lyndon word µ = S[h..i+χ). This run might even be longer: Let `′ = lce(h, i+χ)
(computed naively), then S[h..i+ χ+ `′) is the longest run of µ that starts at index h. If the
run is increasing, then pss[i+ χ] = h holds (see Section 5.1), and the longest LCE that we
discover when processing index i+ χ is `′. If the run is decreasing, then pss[i+ χ] = pss[h]
holds. Also in this case, the longest LCE that we discover when processing index i+ χ is `′,
since lce(pss[i+ χ], i+ χ) is less than |µ| (see proof of Lemma 12). Therefore, the critical
cost of processing index i + χ is O(`′). However, since the Lyndon run has at least three
repetitions, we will also skip the processing of Ω(`′) indices by using the run extension. The
algorithmic procedure for the second case can be summarized as follows: We process index
i with critical cost O(`) and skip χ − 1 indices afterwards. Then we process index i + χ

with critical cost O(`′) and skip another Ω(`′) indices by using the run extension. Since we
have `′ = Ω(`), the total critical cost is O(`′), and the total number of processed or skipped
indices is Ω(`′). Thus, the average critical cost per index is constant.

Proving Lemma 13. It remains to be shown that Lemma 13 holds. For this purpose, assume
Bpss[oj ..oj+b`/4c−1] 6= Bpss[oi..oi+b`/4c−1]. From now on we refer to Bpss[oj ..oj+b`/4c−1] and
Bpss[oi..oi+b`/4c−1] as left and right side, respectively. Consider the first mismatch between
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Si+h =

1
↓

d
↓

α

`−h
↓

Si+`
Sj+h = α Sj+`


∧ d < `− x
∧ d = lce(j + h, j + x)
` = lce(j, i)

 =⇒ =⇒
(
⇔ Si+h ≺ Si+x
Sj+h ≺ Sj+x

)
Sj+x = β Sj+`
Si+x =

↑
1
↑
d

β

↑
`−x

Si+`

Figure 5 Proving Lemma 13. Equal colors indicate equal substrings. (Best viewed in color.)

the two, where w.l.o.g. we assume that the mismatch has an opening parenthesis on the left
side, and a closing one on the right side. On the left side, the opening parenthesis corresponds
to a node j + x with x ∈ [1, b`/4c) that is a child of another node j + h. Since S[j..j + `) is a
Lyndon word, all nodes from (j, j + `) are descendants of j. Consequently, we have h ∈ [0, x).
Now we look at the right side: Since we have a closing parenthesis instead of an opening one,
we know that i+x is not attached to i+h, but to a smaller node, i.e. we have pss[i+ x] < i+h.
It follows that Sj+h ≺ Sj+x and Si+h � Si+x hold. Let d = lce(j + h, j + x) and assume
d ≤ `− x. Then due to Sj+h ≺ Sj+x we have S[j + h+ d] < S[j + x+ d]. However, since we
have S[j..j + `] = S[i..i+ `], it follows lce(i+ h, i+ x) = d and S[i+ h+ d] < S[i+ x+ d],
which contradicts Si+h � Si+x (see Figure 5). Thus, it holds d = lce(j + h, j + x) ≥ `− x.

Now we show that S[j + h..j + `) is a Lyndon run with period x− h. Since pss[j + x] =
j + h holds, it follows from Lemma 4 that S[j + h..j + x) is a Lyndon word. Due to
lce(j+h, j+x) > `−x ≥ 3(`/4) ≥ 3(x−h) we know that the Lyndon word repeats at least
four times, and the run extends all the way to the end of S[j..j + `). Note that since the
opening parenthesis of node j + x causes the first mismatch between Bpss[oj ..oj+b`/4c−1] and
Bpss[oi..oi+b`/4c−1], we have Bpss[oj ..oj+x−1] = Bpss[oi..oi+x−1]. Therefore, χ ← x already
satisfies Lemma 13.

Finally, we explain how to determine χ = x in O(`) time. As described above, if
Bpss[oj ..oj+b`/4c−1] 6= Bpss[oi..oi+b`/4c−1], then there is some offset h < b`/4c such that
S[j+h..j+ `) is a Lyndon run of at least four repetitions of a Lyndon word µ. Consequently,
S[j + b`/4c ..j + `) has the form suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ) are a
proper suffix and a proper prefix of µ. A string of this form is called extended Lyndon run.
In Section 5.2.1 we propose an algorithm that checks whether or not S[j + b`/4c ..j + `) is an
extended Lyndon run in O(`) time and constant additional space. If S[j + b`/4c ..j + `) is
not an extended Lyndon run, then we have Bpss[oj ..oj+b`/4c−1] = Bpss[oi..oi+b`/4c−1] and no
further steps are needed to satisfy Lemma 13. Otherwise, the algorithm from Section 5.2.1
also provides the period |µ| of the run, as well as |suf(µ)|. In this case, we try to extend
the extended Lyndon run to the left: We are now not only considering S[j + b`/4c ..j + `),
but S[j..j + `). We want to find the leftmost index j + h that is the starting position of a
repetition of µ. Given |µ| and |suf(µ)|, this can be done naively by scanning S[j..j + b`/4c]
from right to left, which takes O(`) time. If we have h ≥ b`/4c − |µ|, then the first case of
Lemma 13 applies and no further steps are necessary. Otherwise, we let χ← h+ |µ|. This
concludes the proof of Lemma 13 and the description of our construction algorithm.
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5.2.1 Detecting Extended Lyndon Runs
In this section, we propose a linear time algorithm that identifies extended Lyndon runs,
i.e. strings of the form suf(µ) · µt · pre(µ) with t ≥ 2, where suf(µ) and pre(µ) are a proper
suffix and a proper prefix of µ. Our approach exploits properties of the Lyndon factorization,
which is defined as follows:

I Lemma 14 (Lyndon Factorization [5]). Every non-empty string S can be decomposed into
non-empty Lyndon words s1, s2, . . . , sm such that S = s1 ·s2 ·. . .·sm and ∀i ∈ [2,m] : si−1 � si.
There is exactly one such factorization for each string.

I Lemma 15. Let S = suf(µ) · µt · pre(µ) be an extended Lyndon run. Let x1, . . . , xk1 be
the Lyndon factorization of suf(µ), and let y1, . . . , yk2 be the Lyndon factorization of pre(µ).
Then the Lyndon factorization of S is x1, . . . , xk1 , µ, µ, . . . , µ︸ ︷︷ ︸

t times
, y1, . . . , yk2 .

Proof. Clearly, the factorization given by the lemma consists solely of Lyndon words. Thus,
we only have to show x1 � . . . � xk1 � µ � y1 � . . . � yk2 . Since we defined x1, . . . , xk1

and y1, . . . , yk2 to be the Lyndon factorizations of suf(µ) and pre(µ) respectively, we already
know that ∀i ∈ [2, k1] : xi−1 � xi and ∀i ∈ [2, k2] : yi−1 � yi hold. It remains to be shown
that xk1 � µ � y1 holds. Since xk1 is a non-empty suffix of suf(µ) and thus also a non-empty
proper suffix of µ, it follows that xk1 � µ holds. Since y1 is a prefix of pre(µ) and thus also
a prefix of µ, it follows (by definition of the lexicographical order) that µ � y1 holds. J

In the lemma above, it is easy to see that the longest factor of the Lyndon factorization
of an extended Lyndon run is exactly the repeating Lyndon word µ. This is the key insight
that we use to detect extended Lyndon runs:

I Lemma 16. Let S be a string of length n. If S is an extended Lyndon run of the form
S = suf(µ) · µt · pre(µ), then we can determine |µ| and |suf(µ)| in O(n) time and O(1) words
of additional space.

Proof. Using Duval’s algorithm [8, Algorithm 2.1], we compute the Lyndon factorization of
S in O(n) time and O(1) words of additional space. The algorithm computes and outputs
the factors one-at-a time and in left-to-right order. Whenever it outputs a factor that is
longer than all previous ones, we store its length l and its starting position d. Note that
since we investigate each factor individually and then immediately discard it, we never need
to store the entire factorization in memory. If S is an extended Lyndon run, then following
Lemma 15 it must have the form S = suf(µ) · µt · pre(µ) with |suf(µ)| = d− 1 and |µ| = l.
Since we know d and l, checking whether S = suf(µ) · µt · pre(µ) holds can be achieved by
performing a simple scan over S. J

6 Algorithmic Summary & Adaptation to the Lyndon Array

We now summarize our construction algorithm for the PSS tree. We process the indices from
left to right using the techniques from Section 4.1, where processing an index means attaching
it to the PSS tree. Whenever the critical time of processing an index is O(`), we skip the
next Ω(`) indices by using the run extension (Section 5.1) or the amortized look-ahead
(Section 5.2). Thus, the critical time per index is constant, and the total worst-case execution
time is O(n). In terms of working space, we only need O(n lg lgn/ lgn) bits to support
the operations described in Section 3.1. The correctness of the algorithm follows from the
description. We have shown:
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I Theorem 17. For a string S of length n we can compute its succinct Lyndon array Bpss
in O(n) time using O(n lg lgn/ lgn) bits of working space apart from the space needed for S
and Bpss.

The algorithm can easily be adapted to compute the Lyndon array instead of the PSS tree.
For this purpose, we use a single array A (which later becomes the Lyndon array), and no
further auxiliary data structures. We maintain the following invariant: At the time we start
processing index i, we have A[j] = pss[j] for j ∈ Pi−1, and A[j] = λ[j] for j ∈ [1, i) \ Pi−1.
As before, we determine pm = pss[i] with the techniques from Section 4.1. In Step 1 and Step
2 we require some access on elements of Pi−1, which we can directly retrieve from A. Apart
from that, the algorithm remains unchanged. Once we computed pm, we set A[i] ← pm
(= pss[i]). Additionally, it follows that i is the first node that is not a descendant of any of
the nodes p1, . . . , pm−1, which means that we have nss[px] = i for any such node. Therefore,
we assign A[px]← i− px (= λ[px]). The run extension and the amortized look-ahead remain
essentially unchanged, with the only difference being that we copy and append respective
array intervals instead of BPS substrings (some trivial shifts on copied values are necessary).
Once we have processed index n, we have A[j] = pss[j] for j ∈ Pn, and A[j] = λ[j] for
j ∈ [1, n] \ Pn. Clearly, all indices px ∈ Pn do not have a next smaller suffix, and we set
A[px] ← n − px + 1 = λ[px]. After this, we have A = λ. Since at all times we only use A
and no auxiliary data structures, the additional working space needed (apart from input and
output) is constant. The linear execution time and correctness of the algorithm follow from
the description. Thus we have shown:

I Theorem 18. Given a string S of length n, we can compute its Lyndon array λ in O(n)
time using O(1) words of working space apart from the space needed for S and λ.

7 Experimental Results

We implemented our construction algorithm for both the succinct and the plain Lyndon array
(LA-Succ and LA-Plain). The C++ implementation is publicly available at GitHub2. As a
baseline we compared the throughput of our algorithms with the throughput of DivSufSort3,
which is known to be the fastest suffix array construction algorithm in practice [12]. Thus,
it can be seen as a natural lower bound for any Lyndon array construction algorithm that
depends on the suffix array. Additionally we consider LA-ISA-NSV, which builds the Lyndon
array by computing next smaller values on the inverse suffix array (see [13], we use DivSufSort
to construct the suffix array). For LA-Succ we only construct the succinct Lyndon array
without the support data structure for fast queries. All experiments were conducted on
the LiDO3 cluster4, using an Intel Xeon E5-2640v4 processor and 64GiB of memory. We
repeated each experiment five times and use the median as the final result. All texts are
taken from the Pizza & Chili text corpus5.

Table 1 shows the throughput of the different algorithms. We are able to construct the
plain Lyndon array at a speed of between 41 MiB/s (fib41) and 82 MiB/s (xml), which is
on average 9.9 times faster than LA-ISA-NSV, and 8.1 times faster than DivSufSort. Even in
the worst case, LA-Plain is still 6.8 times faster than LA-ISA-NSV, and 5.2 times faster than

2 https://github.com/jonas-ellert/nearest-smaller-suffixes
3 https://github.com/y-256/libdivsufsort
4 https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
5 http://pizzachili.dcc.uchile.cl/

https://github.com/jonas-ellert/nearest-smaller-suffixes
https://github.com/y-256/libdivsufsort
https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
http://pizzachili.dcc.uchile.cl/
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Table 1 Throughput in MiB/s.
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LA-Plain 60.57 50.83 60.58 62.18 66.13 82.10 53.08 59.09 41.71 62.27
LA-Succ 52.81 46.03 49.49 52.77 57.31 68.56 48.20 50.35 35.30 54.42

LA-ISA-NSV 4.61 4.86 9.13 4.40 7.41 7.11 5.44 6.72 3.81 6.79
DivSufSort 5.53 5.76 11.61 5.21 9.25 8.62 6.57 8.45 4.20 8.45

DivSufSort (pitches). When constructing the succinct Lyndon array we achieve around 86%
of the throughput of LA-Plain on average, but never less than 81% (pitches). In terms of
memory usage, we measured the additional working space needed apart from the space for
the text and the (succinct) Lyndon array. Both LA-Plain and LA-Succ never needed more
than 0.002 bytes of additional memory per input character (or 770 KiB of additional memory
in total), which is why we do not list the results in detail.

8 Summary

We showed how to construct the succinct Lyndon array in linear time using O(n lg lgn/ lgn)
bits of working space. The construction algorithm can also produce the (non-succinct)
Lyndon array in linear time using only O(1) words of working space. There are no other
linear time algorithms achieving these bounds. Our algorithm performs also extremely well
in practice. We envision applications of these practical algorithms in full-text indexing, such
as an improved implementation of Baier’s suffix array construction algorithm [1], or as a first
step in sparse suffix sorting [11, 4].
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