
Master's thesis

E�cient Algorithms for the Maximum

Common Subgraph Problem in Partial

2-Trees

Florian Kurpicz

April 7, 2014

Supervisors:

Prof. Dr. Petra Mutzel

Dipl.-Inf. Nils Kriege

Faculty of Computer Science

Algorithm Engineering (Ls11)

Technische Universität Dortmund

http://ls11-www.cs.tu-dortmund.de

mailto:florian.kurpicz@tu-dortmund.de
http://ls11-www.cs.tu-dortmund.de

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Graphs . 3

2.2 Graph decompositions . 6

2.2.1 Tree decompositions . 7

2.2.2 Normalized tree decompositions . 8

2.2.3 BC-trees . 8

2.3 Partial 2-trees . 10

2.3.1 SPQR-trees . 11

2.3.2 SP-trees . 12

2.3.3 Extended BC-trees . 15

2.4 Complexity . 16

3 The Maximum Common Subgraph Problem for Partial 2-trees 19

3.1 The Complexity of the Decision Version of the Maximum Common Subgraph

Problem and the Numerical Matching with Target Sums Problem 20

3.2 The Graphs for a Polynomial-Time Reduction 21

3.2.1 The Graph GX,Ys . 22

3.2.2 The Graph HX,Y

s,~b
. 26

3.2.3 Characteristic of a Maximum Common Subgraph of GX,Ys and HX,Y

s,~b
29

3.3 A Polynomial-Time Reduction from the Numerical Matching with Target

Sums Problem to the Maximum Common Subgraph Problem 32

4 The 2-connected Maximum Common Subgraph Problem in 2-connected

Partial 2-Trees 35

4.1 Ideas of the Algorithm . 36

4.1.1 Separators . 36

4.1.2 Split Graphs . 38

4.1.3 The Methods MwbMatching and Next 39

i

ii CONTENTS

4.2 An Algorithm for the 2-connected Maximum Common Subgraph Problem

in 2-connected Partial 2-Trees . 39

4.2.1 Computation of 2-MCS-Series . 41

4.2.2 Computation of 2-MCS-MatchEdges 43

4.3 Analysis of the Algorithm . 43

4.4 Summary . 46

5 The Block-and-Bridge Preserving Maximum Common Subgraph Prob-

lem in Partial 2-Trees 47

5.1 Characteristics of a Block-and-Bridge Preserving Maximum Common Sub-

graph . 48

5.2 An Algorithm for the Block-and-Bridge Preserving Maximum Common Sub-

graph Problem in Partial 2-Trees . 53

5.2.1 Computation of BBP-MCS-Series 54

5.2.2 Computation of PPB-MCS-Cut . 55

5.2.3 Computation of BBP-MCS-Edges 58

5.3 Correctness and Running Time . 58

5.4 Summary . 61

6 The Maximum Common Subgraph Problem in Partial 2-Trees with a

Bounded Number of Chordless Cycles 63

6.1 Con�gurations, Cycles and SP-trees . 63

6.2 An Algorithm for the Maximum Common Subgraph Problem in Partial 2-

Trees with a Bounded Number of Chordless Cycles 68

6.2.1 Computation of MCS-BCC-Series and MCS-BCC-MatchEdges 69

6.2.2 Computation of MCS-BCC-Cut . 70

6.3 Correctness and Running Time . 72

6.4 Summary . 73

7 Conclusion and Outlook 75

Variables, Functions and Abbreviations 77

List of Figures 80

List of Algorithms 81

Index 83

Bibliography 85

Chapter 1

Introduction

A maximum common subgraph of two graphs G and H is a graph isomorphic to subgraphs

of both G and H such that there is no greater graph isomorphic to any subgraph of G

and H. In this thesis, the size of these common subgraphs is measured by the number

of vertices of the graph. The size of a maximum common subgraph is an indicator for

the similarity of those graphs. Since graphs are a widespread data structure which can

represent objects and their relations, they are used in many areas, like chemistry[25, 19]

or pattern recognition[9].

The maximum common subgraph problem denotes the problem of �nding the size of a

maximum common subgraph of two graphs. The problem is well studied and there exist

lot of results regarding the complexity in di�erent graph classes. It is known to be NP-

complete if the maximum common subgraph is not required to be connected. Therefore,

the problem considered in this thesis always requires a common subgraph to be connected.

Also, it is known to be solvable in polynomial time in trees [1], in connected almost trees

of bounded degree [2] and if one input graph is a partial k-tree with bounded degree and

the other input graph has a bounded number of spanning-trees[30].

In 2013 two papers [4, 3] regarding the complexity of the maximum common subgraph

problem have been published. For two graph classes, the outerplanar graphs with bounded

degree and partial 11-trees with degree greater than �ve, they show that the maximum

common subgraph problem is either solvable in polynomial time or is NP-hard. There

is still a huge gap in the hierarchy of graph classes, for which it is unknown whether the

maximum common subgraph problem is solvable in polynomial time.

In this thesis, the maximum common subgraph problem in partial 2-trees is considered.

Partial 2-trees are a direct superclass of the outerplanar graphs and it is known that there

are restrictions for which the maximum common subgraph problem in partial 2-trees can be

solved in polynomial time [20]. Di�erent restrictions regarding the input graphs and feasible

common subgraphs are considered and algorithms solving the problem in polynomial time

1

2 CHAPTER 1. INTRODUCTION

with respect to these restrictions are presented. Also, it is shown that there are restrictions

which are not su�cient to guarantee the existence of a polynomial time algorithm.

This thesis is organized as follows. In Chapter 2 a basic introduction of the used

de�nitions, notations and graph theory is given. The focus is set to graph decompositions,

starting with the tree decomposition and a stricter normalized tree decomposition which

can be applied to all graphs. Then SP-trees are introduced as data structure emphasizing

the series and parallel components of a 2-connected series-parallel graph. Since partial 2-

trees are mainly considered in this thesis which are not necessarily 2-connected, the BC-tree

is introduced as data structure highlighting the 2-connected components of a graph. These

2-connected components are then associated with a SP-tree. These graph decompositions

and the SP-trees and BC-trees in particular are then extensively used in the following

chapters as basic data structure the algorithms work on.

In Chapter 3 it is shown that the maximum common subgraph problem in partial 2-

trees is NP-hard even if all vertices except one in each graph has bounded degree. To do

so, a polynomial-time reduction from the numerical matching with target sums problem

to the maximum common subgraph problem in partial 2-trees is de�ned.

Then in the following chapters, di�erent restrictions of the problem are discussed. First

in Chapter 4 both the input graphs and the feasible common subgraphs are restricted to be

2-connected and it is shown that under this restriction the problem is solvable in polynomial

time. Then in Chapter 5 the block-and-bridge preserving maximum common subgraph

problem in partial 2-trees is considered. Therefore, the feasible common subgraphs are

required to be block-and-bridge preserving. It is shown that the approach used for 2-

connected graphs can be extended and then applied to this problem. Last, in Chapter 6

only the input graphs are restricted to have a bounded number of chordless cycles. It is

shown that the problem can also be solved in polynomial time in these graphs.

Finally in Chapter 7 these results are summarized and resulting open problems are

mentioned.

Chapter 2

Preliminaries

In this chapter the mathematical and graph theoretical concepts, needed in the further

course, are discussed. Also the notation used in this thesis is explained. The �rst section

deals with fundamental de�nitions regarding graphs. The second section introduces di�er-

ent graph decompositions, while the third section is about partial 2-trees and equivalent

graph classes and their characteristics. In the last section di�erent complexity classes and

methods to proof the membership of problems to these classes are discussed.

2.1 Graphs

A graph G = (V,E) is a pair consisting of a �nite set V of vertices and a �nite set E of

edges. The set of edges consists of pairs of vertices, thus E ⊆∈ V × V . There are two

types of graphs: directed graphs and undirected graphs. If a graph is directed, the pairs

are ordered. Otherwise, if the graph is undirected the pairs are unordered. Unless stated

otherwise, undirected graphs are considered. If there is an edge e = (u, v) ∈ E then u and

v are incident to e also u is adjacent to v and vice versa. The degree of a vertex v ∈ V
is the number of edges incident to v and denoted by deg(v). For each graph G, V (G) is

denoting the set of vertices of the graph and E(G) is denoting the set of edges of the graph.

A function λ : E ∪ V 7→ N is called a graph labeling . A labeled graph is a graph

G = (V,E) with an additional graph labeling λG. In this thesis all graphs are considered

to have no graph labeling, but as long as not stated otherwise all results can be applied on

labeled graphs, too. If in any �gure a graph contains labels its for the readers convenience

� a help to better identify di�erent parts of the graph.

There is a path between two vertices u, v ∈ V (denoted by u v) if there is a set of

vertices w0, . . . , wk ∈ V such that wi−1 is incident to wi for all i = 1, . . . , k and w0 = u

and wk = v. A graph is connected if for all vertices u, v ∈ V there is a path u v. An

induced subgraph is called component if it is connected. If a graph is still connected after

the removal of any k − 1 vertices, then the graph is k-connected .

3

4 CHAPTER 2. PRELIMINARIES

(a)

u

v

(b)

Figure 2.1: A 2-connected (a) and 1-connected undirected graph (b).

An induced subgraph is called k-connected component , if it is k-connected. Let W ⊆
V (G) and G[W] := (W, {(u, v) ∈ E(G) : u, v ∈W}) then G[W] denotes the induced sub-

graph by W in G. If a graph G is connected and for any v ∈ V (G) the graph G \ v :=

G[V (G) \ {v}] is not connected, then v is called cutvertex . Also let S ⊆ V (G), then

G \ S := G[V (G) \ S]. If G \ S is not connected the set S is called separator . Also let

C(G \ S) denote the set of connected components caused by the removal of S. The graph

in Figure 2.1(a) is 2-connected since no matter which vertex is removed the graph is still

connected. The graph in Figure 2.1(b) on the other hand is only connected since the vertex

u is a cutvertex because if u is removed, there is no path from any other vertex to v.

A graph G contains a cycle if there is a vertex v ∈ V (G) and a path v v which

contains at least one more vertex u ∈ V such that u 6= v. If on the other hand the path

contains only the edge (v, v), then the cycle is called loop. A graph without any cycles is

called forest . If the graph is connected, then the forest is called tree. Let G be a tree. The

vertices v ∈ V (G) with deg(v) = 1 are called leaves.

A graph G = (V,E) is bipartite if there are two partitions called bipartition V1, V2 ⊆ V
such that V1 ∩ V2 = ∅, V1 ∪ V2 = V and there is no e = (u, v) ∈ E such that u, v ∈ V1 or

u, v ∈ V2.

Figure 2.2: A bipartite graph. All vertices in a bipartition are either blue or red.

Let G = (V,E) be a graph. A matching is a subset M ⊆ E of edges such that for all

v ∈ V there is at most one edge e ∈M with e is incident to v. Hence each vertex is incident

to at most one edge in the matching. Let G = (V,E) be a graph and w : E → N ∪ {−∞}
be a weighting function. The maximum weighted matching problem denotes the problem of

�nding a matching M such that for each other matching M ′
∑

e∈M w(e) ≥
∑

e∈M ′ w(e′).

The maximum weighted bipartite matching problem denotes the maximum matching prob-

2.1. GRAPHS 5

lem on bipartite graphs. In this thesis a function MwbMatching(M,M ′, w) is used.

This function returns the size of a maximum weighted matching of the bipartite graph

(M ∪M ′,M ×M ′) and a given weighting function.

A complete graph is a graph in which each disjunct pair of vertices is connected by an

edge. Kn denotes a complete graph with n vertices. A complete bipartite graph is a graph

in which each two vertices with both vertices being in a di�erent bipartition are adjacent.

Kn,m denotes the complete bipartite graph in which one bipartition contains n vertices

and the other contains m vertices.

A graph is simple if it contains no loops and at most one edge between any two vertices.

In this thesis only simple graphs are considered. A graph is called planar if it can be drawn

into the Euclidean plane so that no edge crosses another edge1. A graph is outerplanar if

it has a crossing-free embedding in the plane such that all vertices are on the outer face,

i.e. it is possible to draw a line starting at an arbitrary vertex with in�nite length never

crossing an edge of the graph.

fo

f1

f2

Figure 2.3: An outerplanar graph with inner faces f1, f2 and the outer face fo.

Let G and H be graphs. If V (H) ⊆ V (G) and E(H) is a subset of the edges E(G)

which consists only of vertices out of V (H), then H is called subgraph of G. G and H

are isomorphic, denoted by G ∼= H, if there is a bijection φ : V (G) → V (H), such that

(u, v) ∈ E(G) ⇐⇒ (φ(u), φ(v)) ∈ E(H) ∀u, v ∈ V (G). H is subgraph isomorphic to G

(denoted by H 4 G), if H is isomorph to a subgraph of G. There is a common subgraph

isomorphism between G and H, if there is a set R ⊆ V (G) and a set S ⊆ V (H) such

that the induced subgraphs G[R] and H[S] are isomorph. Let φ be the common subgraph

isomorphism, then φ is a maximum common subgraph isomorphism if there is no common

subgraph isomorphism φ′ with |dom(φ′)| > |dom(φ)|.
The edge induced common subgraph which is considered in [25, 26] is another type of

common subgraph. The measure for the size of an edge induced common subgraph are

the edges of the subgraph. The main di�erence is, that for an edge induced common

subgraph of two subgraphs G and H of graphs G′ resp. H ′ there must not be a bijection

φ : V (G) → V (H), such that (u, v) ∈ E(G′) ⇐⇒ (φ(u), φ(v)) ∈ E(H ′) ∀u, v ∈ V (G).

Instead only the subgraphs must be isomorphic.

1A much more detailed de�nition can be found in [23].

6 CHAPTER 2. PRELIMINARIES

(a) (b) (c)

Figure 2.4: A graph isomorphism (a), subgraph isomorphism (b) and a common subgraph iso-

morphism (c).

Therefore an edge induced maximum common subgraph, which is de�ned analogous to

the maximum common subgraph but with respect to the number of edges, is not neces-

sarily equivalent to a maximum common subgraph. In [19] it is shown that under some

restrictions2 an edge induced maximum common subgraph induces an maximum common

subgraph as de�ned above. In Figure 2.5 the highlighted red edges contradict the re-

striction of a maximum common subgraph. The vertices which would be contained in a

maximum common subgraph are highlighted in green.

Figure 2.5: Example of an edge induced maximum common subgraph.

2.2 Graph decompositions

In this section di�erent graph decompositions are presented. The main idea behind graph

decompositions is to gain additional information about the graph by adding further struc-

tures to the graph in a way that di�erent characteristics of the graph are highlighted. First

in Section 2.2.1 and 2.2.2 two tree decompositions for graphs are presented which empha-

size how a graph di�ers from a tree and also are used to de�ne a measure of the di�erence.

Then, in Section 2.2.3 a decomposition which focuses on the 2-connected components of

a graph is presented. This graph decomposition is then extended by the previously pre-

sented decomposition. Last in Section 2.3 a tree decomposition which is only applicable

2The approach is based on line graphs, which represent the edges of a graph. In [29] it is shown that if

two line graphs are isomorphic, then the graphs are isomorphic, too, with respect to the following exception.

This does not work if any of the two graphs contains a K3 or K1,3 since these graphs have isomorphic line

graphs but are not isomorphic.

2.2. GRAPH DECOMPOSITIONS 7

to 2-connected graphs and mainly represents the 3-connected components of these graphs

is presented. This decomposition is then used to extend the decomposition presented in

Section 2.2.3 to be applicable to all partial 2-trees.

2.2.1 Tree decompositions

The tree decomposition of a graph G = (V,E) is a pair TD(G) = (T,X) where T is a

tree and X = (Xz)z∈V (T) is a family of subsets of V (G), called bags, which satis�es the

following conditions:

TD1
⋃
z∈V (T)Xz = V (G),

TD2 ∀(u, v) ∈ E(G) ∃z ∈ V (T) such that u, v ∈ Xz,

TD3 Xz1 ∩Xz3 ⊆ Xz2 ∀z1, z2, z3 ∈ V (T) if z2 is contained in a path z1 z3 in T .

The tree width of tree decomposition TD(G) = (T,X) is maxz∈V (T) {|Xz| − 1} and the

tree width of a graph G (denoted by tw(G)) is equal to the smallest tree width of all tree

decompositions of G. It must be noted that the tree decomposition of a graph is not unique,

as a tree decomposition with only one bag which contains all vertices of the graph is always

a feasible tree decomposition. In the further course, if there is a tree decomposition of a

graph G with tw(G) = k, it is assumed, that all bags in a tree decomposition of G contain

at most k + 1 vertices.

j, n, m

j, i, n j, m, l

j, l, k j, l, o

(a)

i

j

k l

m

n

o

(b)

Figure 2.6: A tree decomposition (a) of the graph shown in (b).

The main idea of the tree width is to �gure out, how tree-alike a graph is, as many

hard problems can easily be solved in trees. The importance of the tree decomposition

and the related tree width is shown by the fact, that many NP-complete problems can be

solved in polynomial time in graphs with a bounded tree width. Popular examples are the

maximum independent set problem3 and the Hamiltonian cycle problem4 [6]. It must be

noted that the problem of �nding the tree width of a graph is NP-complete [5], whereas

3Find the greatest set of vertices of which no two vertices are adjacent to each other [14, GT20].
4Does the graph contain a path which contains all vertices exactly once and also is a cycle [14, GT37]?

8 CHAPTER 2. PRELIMINARIES

it can be checked in linear time whether a graph has tree width less or equal k for a �xed

parameter k as proved in [7]. In the same paper it is shown, that the tree decomposition

with tree width less or equal k can also be computed in linear time.

2.2.2 Normalized tree decompositions

The normalized tree decomposition presented in this section is based on [15]. Unlike the

tree decomposition, which seems to have a standard de�nition in the literature, there are

more de�nitions of a normalized tree decomposition which are not equal5.

Let G be a connected graph. As mentioned before, a set S ⊆ V (G) is called separator of

G, if and only if G[V (G)\S] consists of two or more connected components. These separa-

tors are used in [15], where a stricter version of the tree decomposition, the normalized tree

decomposition, denoted by NTD(G), is introduced. A normalized tree decomposition is a

restricted tree decomposition denoted by NTD(G) = (T,X). The vertices of the tree T are

divided into two types: The clique nodes denoted by C and the separator nodes denoted

by S. For each separator node s ∈ S, the associated bag Xs must be a separator of G. Let

G be a graph. A tree decomposition TD(G) is called normalized tree decomposition if the

following conditions are satis�ed in addition to the conditions (TD1) � (TD3):

NTD1 T is a bipartite graph regarding S and C and all leaves of T are clique nodes,

NTD2 |Xs| ≤ k ∀s ∈ S and |Xc| ≤ k + 1 ∀c ∈ C, where k = tw(G),

NTD3 for each three adjacent nodes (i, j, k) in T : Xj = Xi∪Xk if j ∈ C andXj = Xi∩Xk

if j ∈ S.

Like the tree decomposition described in subsection 2.2.1 a normalized tree decompo-

sition is not unique for a graph. For each graph with tree width k there is a normalized

tree decomposition with tree width k. Therefore it is NP-complete to �nd a normalized

tree decomposition with tree width equal to the three width of the graph but a normalized

tree decomposition with size k can be found for any k ∈ N if there is any. A normalized

tree decomposition can be constructed from a tree decomposition in polynomial time.

2.2.3 BC-trees

Since the restriction of only being applicable to 2-connected graphs is rather strict, there

is a need for a decomposition which can represent even connected graphs. As unlike

arbitrary graphs a partial 2-tree is at most 2-connected, the following de�nitions apply

only for 2-connected graphs and may not apply for connected graphs. Let G be a graph.

Each k-connected component with k ≥ 2 of maximal size is called a block . There are two

5The normalized tree decomposition presented in [18] is a rooted tree decomposition with restrictions

regarding the children based on the parent-child relation and without restriction NTD2.

2.2. GRAPH DECOMPOSITIONS 9

j, i, n

j, n

j, n, l

l, n

l, m, n

j, lj, l, k

j, o, l

Figure 2.7: A normalized tree decomposition of the graph in Figure 2.6(b).

di�erent types of blocks: A maximal 2-connected subgraph6 and a bridge which denotes

to a graph consisting of two vertices which are both incident to the same vertex. Due to

the de�nition, any two blocks of G may have only one vertex in common, which must be

a cutvertex. Otherwise these two blocks would be in the same 2-connected component.

Blocks which are not bridges are called non-bridge blocks.

The block graph of a graph G is the graph which has all blocks and cutvertices of G as

nodes7 and an edge between two nodes, if one is associated with a cutvertex v while the

other is associated with a block and the intersection of the vertices corresponding to the

nodes contains exactly v. Therefore a block graph is bipartite with respect to the nodes

associated with a cutvertex and the nodes associated with a block. All edges and vertices

of G are contained in the blocks of G. The set of cutvertices of G is equal to the union of

all pairwise disjoint intersections of blocks of G. Let B denote the set of blocks of G and

C the set of cutvertices of G. The graph with vertices B ∪ C, edges between each block

b ∈ B and cutvertex c ∈ C if c is contained in b is called block graph of G and denoted

by BC(G). Like the nodes in a SP-tree, the nodes in a BC-tree have a skeleton graph.

In the case of a cutvertex the skeleton graph consists of a single vertex while in case of a

block the whole subgraph is contained in the skeleton graph. Unlike the skeleton graphs

in SP-trees there are no virtual edges.

A block graph contains two kinds of nodes: The B-nodes which represent blocks and

the C-nodes which represent cutvertices. Due to its de�nition this graph is a forest and

bipartite. If G is connected, the block graph is a tree as proved in Lemma 2.2.1 and referred

6For an arbitrary graph the subgraph may be more than 2-connected.
7In the course of this thesis the vertices of graph decompositions are called nodes while the vertices of

the original graph are still called vertices. Therefore, it should be easier to distinguish the vertices of a

decomposition and the vertices of the underlying graph.

10 CHAPTER 2. PRELIMINARIES

to as BC-tree. It must be noticed, that in Figure 2.8 the B-nodes are also divided into two

sets. The set Br contains all bridges while Bl contains all non-bridge blocks. Therefore

B = Bl ∪̇Br. This extension of the BC-tree is needed in Section 2.3.3 where the non-bridge

blocks are extended.

Bl1 Bl2

Br1

Br2

C1 C2

C3

(a)

Bl1

C1 Br1 C2 Bl2 C3

Br2

(b)

Figure 2.8: A partial 2-tree with cutvertices highlighted in green, bridges in blue and non-bridge

blocks in red (a) and the block graph of this graph (b).

Lemma 2.2.1. The BC-tree of any connected graph G is a tree.

Proof. Let G be a connected graph and T = BC(G) the BC-tree of G. There are two

cases in which T would not be a tree: First T is not connected, second T contains a cycle.

Let B1, . . . , Bn be the B-nodes of T for n ≥ 2. If there is just one B-node, T must be

connected. If T is not connected, then there must be at least two B-node B1 and B2 such

that there is no path B1 B2 in T . Thus for any vertex v1 associated with B1 and v2

associated with B2 there are no cutvertices on a path v1 v2 in G, but since v1 and v2

are in di�erent blocks, G cannot be connected which is contradicting to the assumption.

Let B1, . . . , Bn with n ≥ 2 be the B-nodes which are contained in the cycle in T . The

induced subgraph of G by the vertices in B1, . . . , Bn would contain a cycle, as each B-node

contains adjacent vertices and at least two B-nodes have one vertex in common. These

B-nodes are 2-connected and may not be split into di�erent B-nodes, therefore the cycle in

T is reduced to a single B-node, so that T is cycle-free and it can be noted that a BC-tree

cannot contain any cycles. �

2.3 Partial 2-trees

Each graph with tree width of at most two is a partial 2-tree[8]. Also partial 2-trees can be

de�ned by one forbidden minor, the K4 [28]. A more visual de�nition can be given with

the help of series-parallel graphs. Let Ks,t
2 be a K2 where one vertex is denoted by s and

the other is denoted by t. A graph is a series-parallel graph if it can be computed from

a �nite set of Ks,t
2 s with the following two operations merging two connected components

by:

2.3. PARTIAL 2-TREES 11

S-operation: merging the vertex denoted with s in one component with the vertex de-

noted by t in the other component or vice versa.

P-operation: merging both vertices denoted by s and both vertices denoted by t.

t
s

s
s s

t
s tt

t

s
t

ts

t s

(a)

s
s s

tt

t

t

(b)

s

t

t

(c)

Figure 2.9: Construction of a series-parallel graph from a set of Ks,t
2 (a) using S-operations (b)

and P -operations (c).

After each operation each connected component has exactly one vertex denoted by s

and one denoted by t. In [12] it is shown that series-parallel graphs also have the K4 as

forbidden minor. This leads to the third equivalent de�nition of partial 2-trees. A graph G

is a partial 2-tree if and only if each 2-connected component of G is a series parallel graph.

Thus, each 2-connected partial 2-tree is a series-parallel graph and can be constructed

as described above. It must be noted that a series-parallel graph constructed with the

operations de�ned above is not necessarily 2-connected, as a sequence of S-operations

results in a simple path. But the de�nition only requires 2-connected components to be

series-parallel and therefore it is not required that each series-parallel graph is 2-connected.

2.3.1 SPQR-trees

SPQR-trees have been introduced in [11] for the �rst time and are a graph decomposition

for 2-connected graphs. The SPQR-tree of a 2-connected graph G is denoted by SPQR(G).

The idea of SPQR-trees is to represent all planar embeddings of the graph and are therefore

unique for each graph. A SPQR-tree can be computed and updated in linear time [17].

Let G be a 2-connected planar graph and T = SPQR(G). The SPRQ-tree of G is a tree in

which each node represents a di�erent part of the graph. A SPQR-tree has four di�erent

types of nodes:

S-node: Represents a cycle in G, concerning partial 2-trees and series-parallel graphs in

particular this can be seen as the result of a sequence of S-operations.

P -node: Represents di�erent paths between two vertices. Regarding series-parallel graphs

this is the result of a sequence of P -operations.

12 CHAPTER 2. PRELIMINARIES

Q-node: A single edge in G is represented by a Q-node. Often these nodes are integrated

in the other node types and therefore omitted.

R-node: The rigid case, each subgraph of G which cannot be depicted as one of the other

types is represented by a R-node. This also implies that the subgraph has a unique

planar embedding8.

In addition to its type each node λ in the SPQR-tree T is associated with a skeleton

graph (denoted by skel(λ)). The skeleton graph of a node consists of all vertices and edges

called real edges in G which are represented by the node λi. In addition there may be

virtual edges in the skeleton graph. For each edge between two nodes λi and λj in the

SPQR-tree, there is a virtual edge in the skeleton graphs skel(λi) and skel(λj) associated

with the edge (λi, λj). The virtual edge is incident to the vertices which are contained in

both skeleton graphs, which must be exactly two due to the construction of the SPQR-tree.

The virtual edge in λi is called pertinent to λj and the virtual edge in λj pertinent to λi

accordingly. The two vertices are a separator of the graph, which must be a set of two

vertices, as the graph must be 2-connected.

Thus, the skeleton graph of a S-node is a cycle consisting of at least three vertices

and real edges while the skeleton graph of a Q-node consists of exactly two vertices. Q-

nodes can be omitted by simply adding read edges to the skeleton graphs. In the original

de�nition each non-Q-node only consists of virtual edges pertinent to a Q-node. The P -

node consists of exactly two vertices and virtual edges between them. There might also

be a real edge between the two vertices. In this case the P -node is called closed and open

otherwise.

(a) (b) (c) (d)

Figure 2.10: Example of the skeleton graph of a S-node (a), a P -node (b), a Q-node (c) and a

R-node (c).

2.3.2 SP-trees

Partial 2-trees are the class of graphs which are primarily considered in this thesis. Due to

the structure of partial 2-trees, each SPQR-tree of a 2-connected partial 2-tree only consist

of S- and P -nodes, as proven in Lemma 2.3.1. Therefore, the SPQR-tree of a partial 2-tree

G is called SP-tree and denoted by SP(G).

8An embedding is unique when the direction is ignored as shown in Theorem 4.0.3

2.3. PARTIAL 2-TREES 13

Lemma 2.3.1. Let G be a 2-connected partial 2-tree and T = SPQR(G), then each node

in T is either a S-node or a P -node.

Proof. As described above, Q-nodes are ignored as they can be represented by the other

types of nodes. Therefore, it is su�cient to show that there are no R-nodes in a SPQR-tree

of a 2-connected partial 2-tree. As a 2-connected partial 2-tree is a series-parallel graph

which can only be constructed by S- and P -operations in particular, it can be constructed

by a �nite sequence C = {c1, c2, . . . , ck} of S- and P -operations. Without loss of generality

it is assumed that the operations are ordered in a way that there is a family of sets O such

that each set in the family contains a disjunct subsequence Ci = {ci1 , ci2 , . . . , cin} with
C =

⋃l
i=1Ci consists of only S- or P -operations. As each S-operation leads to a path

and each P -operation to a cycle, it can be shown by induction regarding the length of the

sequence that T only consists of S- and P -nodes. �

SP-trees and normalized tree decompositions are strongly related representations of a

graph as both can be obtained from each other. But unlike a normalized tree decomposition

a SP-tree of a graph is unique, as it is a SPQR-tree without any R-nodes. A SP-tree can

be obtained from a normalized tree decomposition by merging each separator node s ∈ S
which is adjacent to exactly two clique nodes and also is associated with a bag Xs of

vertices that are non-adjacent in G with its neighbors. After merging all these nodes, the

separator nodes can be transformed to P -nodes and the clique nodes can by transformed

to S-nodes. The skeleton graphs of the P -nodes contain the vertices which are in the bags

associated with the separator nodes whereas the skeleton graphs of the S-nodes contain

all vertices which are in the bags associated with the clique nodes and all edges between

these vertices which are in the graph itself. In addition to these edges both types of nodes

contain virtual edges, which are generated as described above.

A normalized tree decomposition can be obtained from a SP-tree by reversing the

merging process. To do so, each S-node with a skeleton graph containing more than

three real vertices has to be split into two S-nodes with and P -node pertinent to both.

Then, if there is no node with a skeleton graph that contains more than three edges, each

S-node represents a clique node whereas each P -node represents a separator node. The

bags associated with these nodes contain the vertices which are contained in the skeleton

graphs of the S- and P -nodes. A clique node and a separator are adjacent if and only if

the corresponding S- and P -node are adjacent in the SP-tree.

The algorithm presented in chapter 4 is initially presented in [20] where a notation for

SP-trees is used which is introduced in [10]. The same notation is used in this thesis.

2.3.2 De�nition (SP-tree). Let G be a 2-connected partial 2-tree with at least three

vertices. Then the SP-tree of G denoted by SP(G) = T is the smallest tree such that the

following conditions are satis�ed:

14 CHAPTER 2. PRELIMINARIES

j, n, i

j, n

j, l, n

l, n

l, m, n

j, lj, k, l

o, j, l

(a)

i, j, l, m

j, lj, k, l

o, j, l

(b)

S

PS

S

j

o
l

j

k l

j

l

i n

m

l

j

(c)

Figure 2.11: Normalized tree decomposition shown in Figure 2.7 with arrows pointing to the

edges being merged (a). The resulting tree (b) and the corresponding SP-tree (c).

SP1 each node λ of T is associated with a skeleton graph Sλ = (Vλ, Eλ). Each edge

e = (u, v) ∈ Eλ is either a real or a virtual edge. If e is a virtual edge, then

S = {u, v} is a separator of G.

SP2 T has two di�erent types of nodes. S-nodes where the skeleton graph is a simple

cycle and P -nodes which have a skeleton graph consisting of multiple parallel edges

between exactly two vertices. If one of the edges is real, the P -node is called open,

closed otherwise.

SP3 for two adjacent nodes λ and η in T , the skeleton graph Sλ contains a virtual edge eη

representing Sη and vice versa. The edge eη is pertinent to the node η and analogous

for λ.

SP4 The graph resulting by merging all skeleton graphs in a way that each virtual edge

is replaced by its pertinent node in T is exactly G.

The set of S-nodes and P -nodes in T are denoted by VS(T) or VP (T) and T is bipartite

regrading these two sets of nodes. Let T be the SP-tree of G and r ∈ E(G). The rooted

SP-tree is the T rooted at the S-node λ with r ∈ V (S(λ)). A rooted tree induces a parent-

child relation where a node λ is parent an adjacent η node if the path from the root node

to λ is shorter than the path from the root node to η. If a node λ is parent of a note η

and eλ ∈ E(S(η)) is the virtual edge pertinent to λ in η, then eλ is called reference of λ

and denoted by ref(λ).

2.3. PARTIAL 2-TREES 15

2.3.3 Extended BC-trees

SP-trees can only decompose 2-connected partial 2-trees. As arbitrary partial 2-trees are

considered later in this thesis, there is need for a graph decomposition which is capable of

decomposing those graphs, too. As even arbitrary partial 2-trees are at most 2-connected,

the BC-tree of a partial 2-tree consists of blocks which are either 2-connected partial 2-tree

or bridges and cutvertices. In this subsection the BC-tree presented in subsection 2.2.3 is

extended.

For the blocks, there are two di�erent cases regarding the subgraph which is associated

with the block. If the block contains a maximal 2-connected subgraph, then the node will

be associated with a SP-tree of this 2-connected subgraph. If the block is a bridge, then it

will be associated with a skeleton graph containing exactly the bridge. During the further

thesis whenever a BC-tree is mentioned, the extended BC-tree is meant. Let G be a partial

2-tree and T = BC(G). The nodes of G have one of three types:

Bl contains a non-bridge block which is associated with the SP-tree of the 2-connected

partial 2-tree represented by this block. The set of all BL-nodes is denoted by Bl(T).

Br contains a bridge. Each bridge contains a skeleton graph which contains exactly the

bridge. The set of all Br-nodes is denoted by Br(T).

C contains a cutvertex. A cutvertex represents exactly one vertex. The set of all C-nodes

is denoted by C(T).

Bl1 Bl2

Br1

Br2

C1 C2

C3

(a)

S

PS

S

j
o

l

j

k l

j

l

i n

m

l

j

Bl1

C1 Br1 C2 Bl2 C3

Br2

S P
S

S

j
o

l

jk
l

j

l

i
nml

j

(b)

Figure 2.12: A partial 2-tree (a) and its extended BC-tree without the skeleton graphs of Br-

nodes and the SP-trees associated with the Bl-nodes highlighted with a gray background

(b).

BC-trees are bipartite regarding blocks and cutvertices but not regarding Bl-nodes and

Br-nodes. A BC-tree of a partial 2-tree contains all information about the graph itself

as each 2-connected component of G is represented as SP-tree. Therefore, each BC-tree

is unique since each 2-connected component of G is represented by its SP-tree, which is

unique and these components are connected by simple paths.

16 CHAPTER 2. PRELIMINARIES

2.4 Complexity

One part of complexity theory is to classify problems by their severity. To do so, di�erent

measures of complexity have been introduced. In this section a short introduction of

complexity theory is given mainly focusing on the measure of time. The de�nitions and

notations are based on [14].

A problem is a general question for which a solution must be found. Usually several pa-

rameters are left unspeci�ed. The problem is described by �rst giving a general description

of all its parameters and second a statement of what properties the solution is required

to satisfy. An instance of a problem is obtained by specifying particular values for all the

parameter, e.g. the maximum independent set problem, which is given for arbitrary graphs

and the properties the is solution required to satisfy are: Any two vertices in the solution

are adjacent if and only if the corresponding vertices in the input graphs are adjacent.

An instance of this problem would be two graphs. Given a problem, an algorithm for the

problem is a step-by-step procedure for solving the problem, thus given an instance for the

problem returning a solution satisfying all requirements given by the problem.

Let I be all instances of a problem P with an algorithm A for P. For each i ∈ I,

|i| denotes the size of the instance given in a reasonable encoding, e.g. integers can be

represented in binary, thus all n ∈ N require size log2(n) to be represented. Usually, a

unary representation in which all n ∈ N require size n to be represented is not reasonable.

An algorithm is called deterministic if each next step is well de�ned and nondeterministic

if there are two options in each step but no rule which option is taken next.

The complexity class P contains all problems P for which a deterministic algorithm A
exists such that there is a polynomial p and the running time of A is bounded by p(|i|)
for all i ∈ I. All problems P for which a nondeterministic algorithm A exists such that

there is a polynomial p and the running time of A is bounded by p(|i|) for all i ∈ I are in

the complexity class NP. Therefore all problems in P are also in NP and thus P ⊆ NP

whereas it is an open problem whether P (NP or not. If a problem is in P, it is considered

to be e�ciently solvable, but if it is in NP, it is not considered to be solvable e�ciently.

A more visual explanation of these two classes is, that P contains all problems which are

solvable in polynomial time whereas NP contains all problems for whom it is possible in

polynomial time to verify whether a solution is feasible or not.

A polynomial-time reduction from a problem P to a problem P ′ is an algorithm A that

solves P by having access to an algorithm A′ for solving P ′ such that if A′ solves P ′ in
polynomial time, then A solves P in polynomial time If such an algorithm A exists, then P
is polynomial time reducible from P ′. A problem A is called NP-hard if every problem in

NP is polynomial time reducible to A. If A is also in NP, then A is called NP-complete.

All NP-complete problems are in the complexity class NPC. As each problem in NP can

be reduced to aNP-complete problem, it is su�cient to show that aNP-complete problem

2.4. COMPLEXITY 17

can be reduced to a problem P to proof that P is NP-hard. If there is a deterministic

polynomial time algorithm for any problem in NPC, then P = NP.

NP

P

NPC

Figure 2.13: Relation of P and NP

As written above, the input must be presented in a reasonable encoding therefore,

problems containing numbers cannot easily be reduced to problems on other data structures

as graphs. For instance the Knapsack problem, [14, MP9]: Given a �nite set U of elements,

a size s : U → Z+ and a value v : U → Z+ for each element in U and two positive integers B

and K. Is there a subset U ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ B and
∑

u∈U ′ v(u) ≥ K? If there

is an algorithm with running time polynomial in a values of s(u), v(u), B orK for any u ∈ U
it is not a polynomial time algorithm for the Knapsack problem. It is only polynomial in

the values of the instance but not in its length as a reasonable encoding of integers only

requires logarithmic length. Hence, such an algorithm would be a pseudo-polynomial time

algorithm.

The concept of strong NP-completeness is introduced in [13]. A problem is called

NP-complete in the strong sense if it remains NP-complete or -hard respectively if the

numbers are bounded by a polynomial. An equivalent and more vivid de�nition is that the

problem remains NP-complete or -hard respectively even if the numbers in an instance of

the problem are encoded unary. So if a problem is NP-complete in the strong sense, the

values of the numbers can be used in the reduction without loosing the polynomial part of

the reduction.

A parameterized problem is a problem for which one or more parameters are �xed so

each instance is extended to a set of tuples (k, i) with k ∈ N and i ∈ I. One example

for a parameterized problem is the tree width problem. The question whether a graph G

has tree width k would be represented by the tuple (k,G). A problem is �xed parameter

tractable if there is an algorithm which solves the problem with input (k, i) and running

time f(k)p(i) where f is a recursive function and p a polynomial. The set of all �xed

parameter tractable problems is called FPT. As stated earlier, the tree width problem is

not solvable in polynomial time but as the parametrized version of the problem is solvable

in polynomial time regarding the parameter the problem is in FPT. Problems in FPT

are also considered to be e�cient solvable since there exists an algorithm with polynomial

running time for the parametrized version of the problem.

18 CHAPTER 2. PRELIMINARIES

Chapter 3

The Maximum Common Subgraph

Problem for Partial 2-trees

The maximum common subgraph problem is an optimization problem. For an optimization

problem, there is a set I of instances, a function F which maps each instance i ∈ I to a

set F (i) of feasible solutions, a weighting function w which maps an instance i ∈ I and

a feasible solution f ∈ F (i) of the instance to a value and a goal function which is either

minimize or maximize. The solution for the optimization problem is the minimum or

maximum feasible solution of the instance regarding the goal and weighting function.

3.0.1 De�nition (Maximum common subgraph problem).

Input: Two graphs G and H.

Output: The size of the maximum common subgraph isomorphism between G and H.

Regarding the maximum common subgraph problem the instances are pairs of graphs,

the feasible solutions are graph isomorphisms between the vertices of the graphs. The

weighting function maps each of the subgraph isomorphisms to an integer equal to the

number of vertices in the codomain of the isomorphism. Last, the goal function of the

problem is maximize because the size of the biggest subgraph isomorphism needs to be

determined.

There is also a decision version of the maximum common subgraph problem which has

an an additional integer k ∈ N as input and the output is the answer to the question

whether there is a maximum common subgraph of size greater or equal to k.

The maximum common subgraph problem is NP-hard for arbitrary graphs while the

decision version of the problem is NP-complete [14, GT48]. Thus, the only known polyno-

mial time algorithm are solving restricted versions of the problem, where either the graph

class of the input graphs G and H or properties of the maximum common subgraphs are

19

20 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

restricted. In some cases both the input graphs and the maximum common subgraphs are

restricted.

Let C be a graph class. Then the maximum common subgraph problem for C refers to

the maximum common subgraph problem where both input graphs G,H ∈ C. In addition

to a special graph class, the graphs in this class can be restricted by a property, e.g.

the maximum degree of the vertices or the number of occurrences of a speci�c structure.

Sometimes even the restriction of the graph class of the input graphs is not enough. Let

C and D be graph classes, then the maximum common D subgraph problem for C refers to
the maximum common subgraph problem where for both input graphs G,H ∈ C and in

addition a common subgraph G? is a feasible solution if and only if G? ∈ D.
In this chapter the maximum common subgraph problem is classi�ed regarding its time

complexity. It is shown that it is NP-hard and NP-complete, respectively, if the decision

version is considered, even if both input graphs are restricted. It is known that the problem

is NP-hard for partial k-trees even if all but k vertices have bounded degree by k+ 2 [16].

It is proven, that this result can be enhanced for partial 2-trees. The problem is NP-hard

and NP-complete for the decision version even if all but one vertex have bounded degree.

The �nal result is presented in Theorem 3.3.2.

The proof of Theorem 3.3.2 is split into three parts. First in Section 3.1 it is shown

that the decision version of the maximum common subgraph problem is in NP even if the

input graphs are restricted to partial 2-trees and the numerical matching with target sums

problem is introduced.

Then in Section 3.2 two graphs are constructed with polynomial size regarding an in-

stance of the numerical matching with target sums problem. These graphs are 2-connected

and have degree bounded by three for all but one vertex. Also special characteristics of

these graphs regarding their maximum common subgraphs are proved, which then are used

in the third part of the proof.

Last, it is shown in Section 3.3 that these two graphs can be used for a polynomial-

time reduction from the numerical matching with target sums problem to the maximum

common subgraph problem and its decision version. All mentions of a polynomial-time

reduction in this chapter are referring to this polynomial-time reduction from the numerical

matching with target sums problem.

3.1 The Complexity of the Decision Version of the Maximum

Common Subgraph Problem and the Numerical Match-

ing with Target Sums Problem

It is easy to see, that the decision version of the maximum common subgraph problem for

partial 2-trees is inNP, since a common subgraph of size k can simply be guessed and then

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 21

be veri�ed in polynomial time. It is not possible to verify that there is no greater common

subgraph for any guessed subgraph, therefore the optimization version of the problem is

not known to be in NP.

Lemma 3.1.1. The decision version of the maximum common subgraph problem for partial

2-trees is in NP.

Proof. There is a nondeterministic algorithm computing the maximum common subgraph

of two partial 2-trees, as the additional information for the algorithm can be a mapping

of vertices from one input graph to the other. The size of this mapping is bounded by

the input graphs. Therefore it is possible to �rst test in polynomial time whether the

mapping is a subgraph isomorphism and second verify whether the mapping maps at

least k vertices. Thus, it is possible to verify in polynomial time whether the additional

information represents a common subgraph of size at least k. Therefore the maximum

common subgraph problem for partial 2-trees is in NP. �

To proof later in Section 3.3 that the decision version of the maximum common sub-

graph problem for partial 2-trees isNP-complete and the optimization version isNP-hard,

respectively it is be shown that they both can be reduced from the following problem:

3.1.2 De�nition (Numerical matching with target sums problem). Given two dis-

joint sets X and Y with |X| = |Y | = n, size s : X ∪ Y → Z+ and a vector ~b =

〈b1, b2, . . . , bn〉 with bi ∈ Z+ for all i = 1, 2, . . . , n. Can X ∪ Y be partitioned into dis-

joint sets A1, A2, . . . , An each containing one element from each of X and Y , such that∑
a∈Ai

s(a) = bi for all i = 1, 2, . . . , n, [14, SP17].

The numerical matching with target sums problem isNP-complete in the strong sense1,

therefore, the numerical values can be used in the polynomial-time reduction without

causing a pseudo-polynomial time algorithm. While it is possible to reduce numerical

matching with target sums problem to the maximum common subgraph problem, it is

not clear whether the maximum common subgraph problem for partial 2-trees is in NP,

therefore, the polynomial-time reduction only proofs that it is NP-hard.

3.2 The Graphs for a Polynomial-Time Reduction

In this section, the two graphs which later will be used in the polynomial-time reduction

from the numerical matching with target sums problem to the maximum common sub-

graph problem are constructed. Therefore, it is important that they can be computed in

polynomial time for each instance. Let (X,Y, s,~b) be an instance of the numerical match-

ing with target sums problem and n = |~b|. For a better overview the following notation

1Reduction from the 3-dimensional numeric matching problem [14].

22 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

is used: Σs :=
∑n

i=1 (s(xi) + s(yi)), Σ~b :=
∑n

i=1 bi, VG = V (GX,Ys), EG = E(GX,Ys),

VH = V (HX,Y
s,r), EH = E(HX,Y

s,r) and [a] := {1, 2, . . . , a} ∀a ∈ Z+.

3.2.1 The Graph GX,Y
s

Graph GX,Ys represents the values of the elements in sets X and Y . The graph consist of

a base gadget, i.e. Figure 3.1. A similar base gadget can be found in graph HX,Y

s,~b
2.

x̄

x̄ x̄ x̄

x̄

x̄

cx̄n,1

cx̄n,2 cx̄n,3 cx̄n,Σs−3

cx̄n,Σs−2

cx̄n,Σs−1

cx̄n,Σs
an

cx̄n,Σs+1

cx̄n,Σs+2

cx̄n,2Σs

. . .

. . .

x̄ x̄

x̄ x̄

an+1
acn+1,n+2 an+2

x̄

Figure 3.1: Base gadget of GX,Y
s , all vertices labeled x̄ are representing the same vertex.

2See Figure 3.4.

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 23

These gadgets are used to guarantee that each maximum common subgraph of the

graphs is a feasible solution of the numerical matching with target sums problem later in

the polynomial-time reduction. The base gadget of GX,Ys consists of one vertex x̄ which

is the vertex with unbounded degree in GX,Ys . There are also 2n cycles which are vertex

disjoint except for the vertex x̄. Each of these cycles consists of 2Σs + 1 vertices. Let

Ci :=
{
cx̄i,j : j ∈ [2 · ΣX,Y

s]
}
∪ {x̄} ∀i ∈ [2n] denote the set containing all vertices in the

i-th cycle.

These cycles are used to distinguish between elements in set X and set Y of the nu-

merical matching with target sums instance. To do so, n of these cycles are chordless while

n cycles have exactly 2 chords. Without loss of generality it is assumed that in the base

gadget of GX,Ys the �rst n cycles are chordless. In addition to the vertex x̄ and the cycles,

the baste gadget of GX,Ys consists of 2n anchor vertices ai for all i ∈ [2n].

x̄

x̄

x̄

x̄

x̄

x̄

x̄

3s(xn) 3s(yn)3

d1,1 d1,2 d1,3

vX2,1,1

v
X 2
,1
,2

v
X 2
,1
,3

vY2,s(y2),2

v
Y 2
,s

(y
2
),

3

v
Y 2
,s

(y
2
),

1

..
.

..
.

Figure 3.2: Graph GX,Y
s with its vertices contained in the base in black, vertices in the separating

paths in green and the vertices representing the values of the elements in X and Y in light

and dark blue, respectively.

The gadgets encoding the values of the elements in X and Y are later connected to

these vertices. In addition to the anchor vertices, there are n − 1 vertices aci,i+1 which

are contained in a path (an+1, a
c
n+1,n+2, an+2, . . . , a

c
2n−1,2n, a2n). This path is required as

otherwise GX,Ys would not be 2-connected. Since the 2-connectivity of the graph is an

24 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

important characteristic, these vertices and the path are necessary. Later it is shown

that no vertex acn+i,n+i+1 is contained in any maximum common subgraph of GX,Ys and

HX,Y

s,~b
for all i ∈ [n]. Therefore, there is no 2-connected maximum common subgraph.

For each element z ∈ X ∪ Y the value of the element is represented by s(z) con-

nected K3's. Thus, for each of the elements in X and Y there is a set of vertices

SXi :=
{
vXi,j,k : j ∈ [s(xi)], k ∈ [3]

}
and SYi :=

{
vYi,j,k : j ∈ [s(yi)], k ∈ [3]

}
, respectively.

These vertices are connected by edges de�ned in Line 3.5, 3.6 and 3.8. The vertices in SXi ,

SYi and the incident edges are a subgraphs of GX,Ys representing the value of the associated

xi and yi for all i ∈ [n], respectively. Each of these subgraphs is connected with one of

the cycles of the base with respect to the set they are associated with. Therefore there

is an edge (cx̄
i,ΣX,Y

s
, vXj,1,1) and (cx̄

n+i,ΣX,Y
s

, vYj,1,1) for each of these subgraphs, Line 3.9. To

obtain a 2-connected graph, two subgraphs induced by SXi and SYi representing values

from di�erent sets are connected by a separating path for each i ∈ [n]. These paths contain

three vertices d1
i , d

2
i and d

3
i for each i ∈ [n]. In addition of ensuring a 2-connected graph,

these paths are later used in the reduction as they indicate whether there is a numerical

matching with target sums, or not. In total GX,Ys is de�ned as followed:

VG =∪
n⋃
i=1

({
d1
i , d

2
i , d

3
i

}
∪
{
aci+n,i+n+1

})
∪

2n⋃
i=1

2·Σs⋃
j=1

{
cx̄i,j
}
∪ {ai}

 ∪ {x̄} (3.1)

∪
n⋃
i=1

s(xi)⋃
j=1

3⋃
k=1

{
vXi,j,k

}
∪
s(yj)⋃
j=1

3⋃
k=1

{
vYi,j,k

} (3.2)

EG =
2n⋃
i=1

{
(x̄, cx̄i,1), (cx̄i,2·Σs

, x̄), (xx̄i,Σs
, ai)

}
∪

2n−1⋃
i=n+1

{
(ai, a

c
i,i+1), (aci,i+1, ai+1)

}
(3.3)

∪
2n⋃
i=1

2·Σs−1⋃
j=1

{
(cx̄i,j , c

x̄
i,j+1)

}
∪

2n⋃
i=n+1

{
(cx̄i,1, c

x̄
i,Σs−1), (cx̄i,Σs+1, c

x̄
i,2Σs−1)

}
(3.4)

∪
n⋃
i=1

s(xi)⋃
j=1

{
(vXi,j,1, v

X
i,j,3), (vXi,j,1, v

X
i,j,2)(vXi,j,2, v

X
i,j,3)

}
(3.5)

∪
n⋃
i=1

s(yi)⋃
j=1

{
(vYi,j,1, v

Y
i,j,3), (vYi,j,1, v

Y
i,j,2)(vYi,j,2, v

Y
i,j,3)

}
(3.6)

∪
n⋃
i=1

{
(vXi,s(xi),3, d

1
i), (d

1
i , d

2
i), (d

2
i , d

3
i), (d

3
i , v

Y
i,s(yi),3

)
}

(3.7)

∪
n⋃
i=1

s(xi)−1⋃
j=1

{
(vXi,j,3, v

X
i,j+1,1)

}
∪
s(yi)−1⋃
j=1

{
(vYi,j,3, v

Y
i,j+1,1)

} (3.8)

∪
n⋃
i=1

({
(ai, v

X
i,1,1), (vYi,1,1, an+i)

})
(3.9)

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 25

Lemma 3.2.1. GX,Ys can be computed in linear time for each instance of the numerical

matching with target sums problem and is a partial 2-tree.

Proof. First it is shown that GX,Ys has a linear size with respect to an instance of the

numerical matching with target sums problem and can therefore be computed in linear

time.

Line in de�nition Short description Number of vertices or edges

3.1 Vertices used in the base gad-

get of GX,Ys and the separat-

ing paths.q

4n+ 8nΣs + 1

3.2 Vertices used to represent the

values of the elements in X

and Y .q

3Σs

3.3 Edges incident to x̄ and the

anchor vertices.q

10n

3.4 Edges contained in the cycles

of the base gadget.q

4nΣs + 2n

3.5 Edges in the K3 representing

the values in X.q

3
∑n

i=1 s(xi)

3.6 Edges in the K3 representing

the values in Y .q

3
∑n

i=1 s(yi)

3.7 Edges connecting the K3's

and the separating paths.q

4n

3.8 Edges connecting the K3's.q Σs − 2n

3.9 Edges connecting the K3's

and the anchor vertices.q

2n

Table 3.1: Number of vertices and edges in GX,Y
s with respect to an instance of the numerical

matching with target sums problem.

As |VG| = 4n+8nΣs+3Σs+1 and |EG| = 16n+4nΣs+4Σs and the values of instances

of the numerical matching with target sums problem can be used, because the problem

is NP-complete in the strong sense, GX,Ys can be computed in linear time regarding a

polynomial-time reduction. GX,Ys is also a partial 2-tree, and as a graph is a partial 2-

tree if each 2-connected component of the graph is a series-parallel graph and as GX,Ys is

2-connected, it is su�cient to show that GX,Ys is a series-parallel graph.

Since it is enough to show that GX,Ys is a series-parallel graph, it is su�cient to show

that it can be constructed with S- and P -operations to proof that GX,Ys is a partial 2-tree.

It is easy to see that a K3 is a series-parallel graph and can therefore be used in this

construction of GX,Ys .

26 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

By joining K3's and K2's with the S-operation, the subgraphs induced by SXi and SYi

can be created in a way that the vertices vX1 and vY1 are denoted with s and t for all

i ∈ [n]. The same can be done for the cycles of the base gadget with the corresponding

anchor vertices such that the cycles with chords have vertex cx̄i,Σs
denoted by s and aci,i+1

denoted by t for all i ∈ [2n − 1] while the 2n-th cycle is not connected to any vertex

ac2n,2n+1. Joining these components with a S-operation and a P -operation results in a

graph where the vertex, which is later denoted by x̄ is denoted by s and for the i-th of

these graphs, the vertex ai+1 is denoted with t for all i ∈ [2n− 1]. These components can

then simply be merged with P -operations, resulting in the graph GX,Ys .

Therefore GX,Ys can be generated with S- and P -operations and is a series-parallel

graph. Since it is 2-connected it also is a partial 2-tree. �

The construction of GX,Ys is exempli�ed in Figure 3.3. To create greater graphs, the

result of the P -operation in Figure 3.3(a) must be joined with a path of length 2 on the

vertex labeled with t. This results in a graph which can be joined with the graph in 3.3(c),

resulting in a graph for which can represent the values of the elements in X and Y of an

instance of the numeric matching with target sums problem containing 3 elements each.

Repeating this process then results in a graph which can represent arbitrary instances.

3.2.2 The Graph HX,Y

s,~b

Graph HX,Y

s,~b
on the other hand represents the values in vector ~b. To guarantee that all

vertices are mapped accordingly, HX,Y

s,~b
contains a base gadget similar to the base of GX,Ys ,

c.f. Figure 3.4. The only di�erence between the base gadget of GX,Ys and the base gadget

of HX,Y

s,~b
is, that the latter has a path between the anchor vertices of chordless cycles while

the path in the base gadget of GX,Ys contains the anchor vertices of the cycles containing

chords.

Like the values of the elements in X and Y in GX,Ys , the values of the vector ~b are

represented by K3's. For each bi there is a set of vertices Bi := {vi,j,k : j ∈ [bi + 1], k ∈ [3]}
for all i ∈ [n]. These subgraphs are also connected to the two cycles induced by CXi and

CYi of the base of HX,Y

s,~b
. The di�erence between GX,Ys and HX,Y

s,~b
is, that there are only n

values which need to be represented in HX,Y

s,~b
in contrast to the 2n values in GX,Ys . Thus,

there is no need for separating paths. To represent the value of bi, H
X,Y

s,~b
contains a set

of vertices Bi which contains exactly 3bi + 3 vertices for all i ∈ [n]. As the values are

represented by K3's, 3bi vertices are needed to exactly represent the value. The additional

three vertices are used for an additional K3 in each subgraph induced by Bi. These K3's

are later used in the reduction and are corresponding to the separating paths in GX,Ys .

These vertices are connected by edges analogously to the vertices in SXi resp. SYi , see Line

3.14. Thus in total HX,Y

s,~b
is de�ned as followed, also see Figure 3.5:

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 27

x̄

x̄ x̄

x̄ x̄

s

t

(a)

x̄

x̄ x̄

s

t

(b)

x̄

x̄ x̄

s

t

(c)

Figure 3.3: The graph in (a) can be constructed by joining the graphs in (b) and (c) with a

P -operation.

VH =∪
n⋃
i=1

{aci+n,i+n+1

}
∪
bi+1⋃
j=1

3⋃
k=1

{
v
~b
i,j,k

} ∪ 2n⋃
i=1

2·Σs⋃
j=1

{
cȳi,j

}
∪ {ai}

 ∪ {ȳ} (3.10)

EH =
2n⋃
i=1

{
(ȳ, cȳi,1), (cȳ

i,2·ΣX,Y
s

, ȳ), (cȳi,Σs
, ai)

}
∪

2n−1⋃
i=n+1

{
(ai, a

c
i,i+1), (aci,i+1, ai+1)

}
(3.11)

∪
2n⋃
i=1

2·ΣX,Y
s −1⋃
j=1

{
(cȳi,j , c

ȳ
i,j+1)

}
∪

n⋃
i=1

{
(cȳi,1, c

ȳ
i,Σs−1), (cȳi,Σs+1, c

ȳ
i,2Σs−1)

}
(3.12)

∪
n⋃
i=1

bi+1⋃
j=1

{
(v
~b
i,j,1, v

~b
i,j,3), (v

~b
i,j,1, v

~b
i,j,2)(v

~b
i,j,2, v

~b
i,j,3)

}
∪

bi⋃
j=1

{
(v
~b
i,j,3, v

~b
i,j+1,1)

} (3.13)

∪
n⋃
i=1

({
(ai, v

~b
i,1,1), (v

~b
i,bi+1,3, an+i)

})
(3.14)

28 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

ȳ

ȳ ȳ ȳȳ

. . .

. . .

ȳ ȳ ȳ

Figure 3.4: Base gadget of HX,Y

s,~b
, all vertices labeled ȳ are representing the same vertex.

Lemma 3.2.2. HX,Y

s,~b
can be computed in linear time for each instance of the numerical

matching with target sums problem and is a partial 2-tree.

Proof. Similar to GX,Ys , the size ofHX,Y

s,~b
is linear to the size of the instance of the numerical

matching problem with target sums. With the same argument used for GX,Ys about the

numerical matching with target sums problem being NP-complete in the strong sense,

HX,Y

s,~b
can be computed in linear time, as |VH | = n + Σ~b + 8nΣs + 1 and |EH | = 16n +

4nΣs + 4Σ~b, see Table 3.2 for a detailed explanation of the size.

Also, with the same argumentation used for GX,Ys it is easy to see, thatHX,Y

s,~b
is a series-

parallel graph and therefore a partial 2-tree because it is 2-connected. The construction

is nearly the same except for the fact that there are no separating paths and the anchor

vertices connected by the path (a1, a
c
1,2, . . . , a

c
i−1,i, ai) contains the vertices ai for i ∈ [n]

and therefore the anchors of the chordless cycles. �

The similarity of the structure given by the base gadgets and the K3's representing the

values of the numbers is later used in the reduction, allowing to determine the size of a

maximum common subgraph in the case, that the instance of the numerical matching with

target sums problem has such a matching. The use of the additional K3 representing the

values in ~b is explained in Lemma 3.2.3. It allows to exclude some subgraphs of GX,Ys and

HX,Y

s,~b
as common subgraph.

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 29

Line in de�nition Short description Number of vertices or edges

3.10 All vertices in the graph

HX,Y

s,~b
.q

n+ Σ~b + 8nΣs + 1

3.11 Edges incident to x̄ and the

anchor vertices.q

10n

3.12 Edges contained in the cycles

of the base gadget.q

4nΣs + 2n

3.13 Edges in the K3 representing

the values of ~b and connecting

these K3's.q

4Σ~b + 2n

3.14 Edges connecting the K3's

and the anchor vertices.q

2n

Table 3.2: Number of vertices and edges in HX,Y

s,~b
with respect to an instance of the numerical

matching with target sums problem.

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

v
~b
2,1,1

v~
b 2
,1
,2

v~
b 2
,1
,3

v
~b
2,bi+1,2

v~
b 2
,b

i
+

1
,1

v~
b 2
,b

i
+

1
,3

ȳ

..
.

..
.

3 (bn + 1)

Figure 3.5: Graph HX,Y

s,~b
with its vertices contained in the base in black and the vertices repre-

senting the values of the elements in ~b in dark blue.

3.2.3 Characteristic of a Maximum Common Subgraph of GX,Y
s and HX,Y

s,~b

Before showing that GX,Ys and HX,Y

s,~b
can be used in a polynomial-time reduction from

the numerical matching problem with target sums to the maximum common subgraph

problem, either the decision or the optimization version, one characteristic of these graphs

and especially their maximum common subgraphs is shown. These results require the

30 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

graphs to have a minimum size, since the chords in the base gadgets require the cycles o

contain at least eight vertices. Therefore it is assumed without loss of generality that the

size is su�cient. For each instance of the numerical matching with target sums problem

where the requirements are not met, there is a k ∈ N such that the requirements are met

if each numeric value in the instance is multiplied with k. Still, there is a matching for an

instance after the multiplication if and only if there is an instance before.

Lemma 3.2.3. Let (X,Y, s,~b) be an instance of the numerical matching with target sums

problem and GX,Ys the graph constructed for this instance. Also let SXi , S
Y
i be the sets

containing the vertices in GX,Ys used to represent s(xi) and s(yi) as de�ned in Section 3.2.1.

The subgraph induced by SXi , S
Y
i and the vertices in the separating paths Di :=

{
d1
i , d

2
i , d

3
i

}
cannot be all in the maximum common subgraph for all i ∈ [n].

Proof. This is because if the vertices in SXi and SYi are mapped to vertices in Bj then at

most two vertices in Di can be mapped to Bj due to the construction of the graphs as the

three vertices in the separating paths cannot be mapped accordingly. Even if SXi and SYi

are mapped to vertices in Bj and Bk with i, j, k ∈ [n], at least one vertex in SXi , S
Y
i or Di

cannot be in the common subgraph as then there would be two adjacent vertices in these

sets mapped to non-adjacent vertices in Bj and Bk, see Figure 3.6.

The red arrow in Figure 3.6(a) shows the vertex which cannot be mapped if both sets

contain the same number of vertices and that it is therefore not possible to map all vertices

of the subgraph induced by SXi , S
Y
i and the corresponding separating path. Because if the

vertices connected by the red arrow would be mapped accordingly, the vertices connected

by the blue dotted arrows would be the only feasible maximal mapping with respect to the

mapping of the vertices connected by the red arrow. Since this mapping is not maximal,

the common subgraph cannot be a maximum common subgraph.

In Figure 3.6(b) the red and green arrows show the problem if the sets SXi , S
Y
i and

Di contain less respectively more vertices than Bj . Then either at some point there is

no vertex which can be mapped to a vertex in Bj or the separating path needs to be

completely mapped which is not possible as described above. �

Lemma 3.2.4. Let M cs =
{

(csG1 , cs
H
1 , ϕ1), (csG2 , cs

H
2 , ϕ2), . . . (csGk , cs

H
k , ϕk)

}
denote the

set of all common subgraphs of GX,Ys and HX,Y

s,~b
where csGi is a subgraph if GX,Ys isomorphic

to csHi which is a subgraph of HX,Y

s,~b
and ϕi denotes the subgraph isomorphism for all i ∈ [k],

then

|csGi , | ≥ |csGj | ∀j ∈ [k]⇒ ϕ(x̄) = ȳ and ϕ(cx̄i,·) = cȳj,· ⇒ i ∈ [n], j /∈ [n] or i /∈ [n], j ∈ [n].

Proof. First it is shown, that each maximum common subgraph of GX,Ys and HX,Y

s,~b
must

contain x̄ and ȳ, respectively and in addition x̄ must be mapped to ȳ by the subgraph

isomorphism. Then it is shown, that the vertices cx̄i,1 and c
ȳ
j,1 are mapped as de�ned above.

3.2. THE GRAPHS FOR A POLYNOMIAL-TIME REDUCTION 31

(a) |SX
i ∪Di ∪ SY

i | = |Bj | (b) |SX
i ∪Di ∪ SY

i | 6= |Bj |

Figure 3.6: Mapping vertices in a subgraph induced by vertices in SX
i , Di and S

Y
i to a subgraph

induced by vertices in Bj such that the vertex vx̄i,1 is mapped to v
~b
j,1 and vȳi,1 is mapped to

v
~b
j,bj+1 for any i, j ∈ [n].

Assume that there are two maximum common subgraphs csG and csH and the subgraph

isomorphism ϕ such that ϕ(x̄) 6= ȳ. Without loss of generality it is assumed that x̄ ∈
V (csG) while ȳ may not even be contained in the maximum common subgraph. Due to

the construction of both GX,Ys and HX,Y

s,~b
, x̄ and ȳ are the only vertices with an unbound

degree. The degree of all other vertices is bounded by three. If ϕ(x̄) 6= ȳ, then ϕ(x̄) has

at most three adjacent vertices and if there is a v ∈ V (csG) such that ϕ(v) = ȳ, then v

has at most three adjacent vertices. Therefore, there can at most be two cycles of the base

gadgets be contained in the common subgraph. Since the degree of the vertices is three,

there could also be two path contained in the maximum common subgraph each starting

at either x̄ or v in GX,Ys . As the longest path in both GX,Ys and HX,Y

s,~b
is smaller than the

size of a cycle in the base gadget, the common subgraph cannot be a maximum common

subgraph.

Now assume that the vertices cx̄i,· are not mapped accordingly. Since each base gadget

has chordless cycles and cycles containing chords, a mapping of vertices in a chordless cycle

to vertices contained in a cycle with chords would result in a common subgraph which

cannot contain the anchor vertex of the corresponding cycles. Therefore each chordless

cycle mapped to a cycle containing chords results in at least one two vertices which cannot

be contained in the common subgraph, the anchor vertex and the vertex connecting the

anchor vertex with another anchor vertex. In Lemma 3.2.3 it is shown that not all vertices

not contained in the base gadget can be contained in a common subgraph. Therefore it is

not possible that the anchor vertex is contained in it. If on the other hand all chordless

cycles in GX,Ys are mapped to chordless cycles in HX,Y

s,~b
and the same is true for the cycles

containing chords, all anchor vertices can be contained in a maximum common subgraph.

Therefore, in each maximum common subgraph the vertices of the base gadgets must

be mapped accordingly and especially ϕ(x̄) = ȳ. �

Thus, in a maximum common subgraph of GX,Ys and HX,Y

s,~b
, the vertices x̄ and ȳ must

be mapped. Also all vertices cx̄i,· and c
ȳ
j,· have a characteristic regarding their mapping in a

maximum common subgraph because half of the cycles in each base gadget contains chords

32 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

while the other does not. These characteristics can now be used in the polynomial-time

reduction as they result in a common structure of each maximum common subgraph.

3.3 A Polynomial-Time Reduction from the Numerical Match-

ing with Target Sums Problem to the Maximum Common

Subgraph Problem

Last it is shown that GX,Ys and HX,Y

s,~b
can be used in a polynomial-time reduction from

the numerical matching with target sums problem to the maximum common subgraph

problem. As GX,Ys and HX,Y

s,~b
can be computed in polynomial time regarding the values

of any instance of the numerical matching with target sums problem, they can be used in

the reduction. Finally the following lemma leads to Theorem 3.3.2.

Lemma 3.3.1. Any instance (X,Y, s,~b) has a numerical matching satisfying all target

sums if and only if each maximum common subgraph of GX,Ys and HX,Y

s,~b
has size |V (HX,Y

s,~b
)|−

n and all vertices
⋃n
i=1

(
SXi ∪ SYi

)
are contained in the maximum common subgraph.

Proof. Let Mmcs :=
{

(mcsG1 ,mcsH1 , ϕ1), (mcsG2 ,mcsH2 , ϕ2), . . . (mcsGk ,mcsHk , ϕk)
}
denote

the set of all maximum common subgraphs of GX,Ys and HX,Y

s,~b
and for each m ∈ Mmcs

let |m| denote the size of the common subgraphs, also without loss of generality it is is

assumed that ϕi(x̄) = ȳ, as proven in Lemma 3.2.4.

First, it is shown that if there is a numerical matching for an instance (X,Y, s,~b) satis-

fying all target sums, then the size of a maximum commons subgraph of the corresponding

graphs GX,Ys and HX,Y

s,~b
has size |V (HX,Y

s,~b
)| − n and all vertices SXi and SYi are contained

in the maximum common subgraph for all i ∈ [n].

Assume that an instance (X,Y, s,~b) has a numerical matching satisfying all target

sums and that each maximum common subgraph m ∈ Mmcs of GX,Ys and HX,Y

s,~b
has size

|m| 6= |V (HX,Y

s,~b
)| − n. As the bases of GX,Ys and HX,Y

s,~b
are mapped accordingly, it is

important to consider the subgraphs induced by SXi , S
Y
i resp. Bi for all i ∈ [n]. Let SGi

denote the subgraph induced by SXi , S
Y
i and

{
d1
i , d

2
i , d

3
i

}
and BH

i the subgraph induced

by Bi for all i ∈ [n]. Then it must be noted that it is not possible to fully map all vertices

in SGi to BH
i for all i, j ∈ [n] as shown in Lemma 3.2.3. This is due to the separating path.

Therefore |m| < |V (HX,Y

s,~b
)| − n and thus there are two cases: Either there is at least one

Di such that two of the vertices are not contained in the maximum common subgraph or

not all vertices SXi and SYi are contained in the maximum common subgraph for all i ∈ [n].

If there is at least oneDi such that two vertices inDi are not contained in the maximum

common subgraph for any i ∈ [n], then there is at least one j ∈ [n] such that all vertices in

Bj are either mapped to vertices in SXk and SYl for any k, l ∈ [n] or not contained in the

maximum common subgraph. As Bi contains 3bi+3 vertices and SXk and SYl contain 3s(xk)

3.3. A POLYNOMIAL-TIME REDUCTION 33

resp. 3s(yl) vertices there cannot be a numerical matching as not all vertices associated

with xk or yl are in the maximum common subgraph.

The case that not all vertices SXi and SYi are contained in the maximum common

subgraph for all i ∈ [n] even thought there is a numerical matching satisfying all target

sums is proved the same way. Without loss of generality there are some vertices in SX1 which

are not contained in the maximum common subgraph. As a maximum common subgraph

containing more vertices of SX1 is always greater than a common subgraph containing less

vertices of SX1 but all vertices in the separating path the maximum common subgraph does

not contain all vertices of Di. Thus there cannot be a numerical matching as otherwise all

vertices of SX1 would be contained in the maximum common subgraph.

Second, it is shown that for each instance (X,Y, s,~b), if there is a maximum common

subgraph of GX,Ys and HX,Y

s,~b
with size |V (HX,Y

s,~b
)| − n and all vertices SXi and SYi are

contained in the maximum common subgraph for all i ∈ [n], then there is a numerical

matching for the instance satisfying all target sums.

Assume that there is no such matching, even if the maximum common subgraph of the

corresponding graphs GX,Ys and HX,Y

s,~b
has the required size and all vertices SXi and SYi are

contained in the maximum common subgraph for all i ∈ [n]. Letm ∈Mmcs be a maximum

common subgraph of those graphs, therefore the bases of GX,Ys and HX,Y

s,~b
are mapped

accordingly. Therefore each subgraph induced by vertices in SXi and SYi is contained in

m as otherwise |m| < |V (HX,Y

s,~b
)| − n. If each subgraph induced by the vertices in SXi and

SYi is contained in m, then |m| = |V (HX,Y

s,~b
)| − 3n < |V (HX,Y

s,~b
)| − n. Thus there must

be exactly 2n vertices contained in the separating paths also be contained in m. As it is

not possible for all three vertices of a separating path to be contained in m there are only

one cases: ∃i ∈ [n] exactly two of {di,1, di,2, di,3} is in m. In this case, there must be at

least one j ∈ [n] such that that no of the vertices in Di := {di,1, di,2, di,3} is contained in

m. Due to the construction of the graph this is not possible because this would require

at least for one i ∈ [n] all vertices in Bi are contained in m which is also not possible as

described above. But if that cannot be the case, then at least one of each vertex in Bi

must be contained in m. �

Thus GX,Ys and HX,Y

s,~b
can be used in a reduction from the numeric matching with

target sums problem to the maximum common subgraph problem and its decision version.

Therefore the �rst is NP-hard while the latter is NP-complete. As the reduction only

uses 2-connected partial 2-trees with degree restricted by three for all but two vertices the

restrictions have been proven, too.

Due to these restrictions, the following result concludes form Lemma 3.3.1.

Theorem 3.3.2. The maximum common subgraph problem in partial 2-trees is NP-hard

and the decision version NP-complete even if both input graphs are 2-connected and have

degree bounded by three for all but one vertex.

34 CHAPTER 3. THE MCS IN PARTIAL 2-TREES

In [16] it has been proven, that the subgraph isomorphism problem for partial k-trees

is NP-complete if either of the graphs is not k-connected or has more than k vertices of

unbounded degree while the rest is bounded by k+2. The subgraph isomorphism problem

can be reduced to the maximum common subgraph problem, as a graph G is subgraph

isomorph to a graph H if and only if a maximum common subgraph has size of |V (G)|.
Therefore this result is applicable for the maximum common subgraph problem. How-

ever, Theorem 3.3.2 restricts the graph classes, for which the maximum common subgraph

problem is NP-hard, even more.

This type of reduction cannot be applied to the restricted version of the maximum

common subgraph problem for partial 2-trees, where the degree of all vertices of the input

graphs is bounded. As a restriction to the degree either restricts the input length of the

problem which is reduced to the maximum common subgraph problem or speci�es an

order on the elements in which way they are compared as demonstrated in Figure 3.7.

Both restrictions seem to be too tight for any NP-complete problem to be reduced to.

x̄1

x̄2

x̄n

ȳ

ȳ

ȳ

x̄ ȳ

Figure 3.7: Base gadget if degree is bounded for all vertices. The green dashed edges can be

replaced such that the graph is a GX,Y
s or a HX,Y

s,~b
.

If the degree is bounded for all vertices, the base has to have a tree-like structure and

therefore it is determined which elements are compared with an entry of the vector. Thus

it does matter which subgraphs induced by SXi and SYj are connected with a separating

path, for all i, j ∈ [n]. Thus a proof as shown above is not possible.

Chapter 4

The 2-connected Maximum Common

Subgraph Problem in 2-connected

Partial 2-Trees

In [4] is shown, that the maximum common subgraph problem in outerplanar graphs of

bounded degree can be solved in polynomial time. Considering the hierarchy of the graph

classes, partial 2-trees are a direct superclass of outerplanar graphs. Therefore each result

applicable for partial 2-trees is also valid for outarplanar graphs. In this section, a restricted

variant of the maximum common subgraph problem for partial 2-trees is considered: The 2-

connected maximum common subgraph problem in 2-connected partial 2-trees. This problem

refers to the maximum common subgraph problem in partial 2-trees in which both a feasible

maximum common subgraph and the two input graphs G and H must be 2-connected.

The algorithm presented in [4] which solves the maximum common subgraph problem

for outerplanar graphs with bounded degree in polynomial time makes massive usage of

Theorem 4.0.3 which is proven in [22]. But unlike outerplanar graphs, partial 2-trees do

not have a unique planar embedding1, therefore, Theorem 4.0.3 is not adaptable for all

partial 2-trees and thus the presented algorithm is not applicable for partial 2-trees, even

if they are 2-connected.

Theorem 4.0.3. Let G and H be 2-connected outerplanar graphs. Let (u1, u2 . . . , um)

and (v1, v2, . . . , vn) be the vertices of G resp. H arranged in the clockwise order in some

(outer)planar embedding2 of G and H. If there is an isomorphic mapping u1 7→ vi1 , u2 7→
vi2 , . . . , um 7→ vim from G to a subgraph of H, vi1 , vi2 , . . . , vim appear in H in either

clockwise or counterclockwise order.

1Ignoring the direction.
2In [4] the theorem only refers to a planar embedding, but the outerplanar embedding must be considered

to order all vertices clock- resp. counterclockwise.

35

36 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

In [20] an algorithm for the 2-connected maximum common subgraph problem in 2-

connected partial 2-trees is presented. In this chapter the algorithm is explained in detail

as the algorithm presented later in Chapter 5 is based on it. It should be noted, that

this chapter is based on [20] since the idea is introduced there. The proofs for all lemmas

and theorems can also be found there. Before presenting the algorithm some notations

and theoretical background is given. Especially the idea of separators is recessed and it is

shown that they can be used to de�ne subgraphs which contain each feasible 2-connected

subgraph with a special characteristic.

4.1 Ideas of the Algorithm

The algorithm for the 2-connected maximum common subgraph problem in 2-connected

partial 2-trees is mainly based on two ideas. First each vertex in a 2-connected common

subgraph must be contained in at least one cycle and second the problem is dividable in

smaller problems, the 2-connected maximum common subgraph problem for subgraphs of

the original instance, in particular. The �rst idea is used to identify feasible solutions while

the second idea is later used to proof that the algorithm has a polynomial running time.

4.1.1 Separators

Separators are used in Section 4.1.2 to de�ne subgraphs based on rooted SP-trees. Later

they also are used to analyze the running time as the number of separators which are used

to de�ne the subgraphs is bounded polynomial by the size of the graph.

Let S be a separator. S is called k-separator if |S| = k, also S is called a (u, v)-separator

if G \ S does not contain any path u v. A separator P is called potential separator

of G if there is a 2-connected induced subgraph of G′ ⊆ G such that S is a separator of

G′. Therefore, for any two partial 2-trees G and H, each separator {u, v} in a 2-connected

common subgraph G′ ⊆ G of these graphs, such that φ is the subgraph isomorphism, is a

potential separator in G and {φ(u), φ(v)} is a potential separator in H.

Let S be an separator of a 2-connected partial 2-tree G, then S is called compulsive

if every normalized tree decomposition of G contains a separator node i associated with

a bag Xi such that Xi = S. If a separator S is compulsive for a graph G but not for an

induced 2-connected subgraph of G, then S is called critical .

Lemma 4.1.1. Let G be a 2-connected partial 2-tree and S = {u, v} such that u, v ⊆ V (G),

then the following statements are equivalent:

(a) S is a critical separator of G,

(b) S is a compulsive separator for G and (u, v) /∈ E(G),

(c) there is a P -node λ in the SP-tree of G such that V (Sλ) = S and (u, v) /∈ E(G),

4.1. IDEAS OF THE ALGORITHM 37

(d) the graph G \ S has at least three connected components and (u, v) /∈ E(G).

A separator S crosses a set of two vertices {u, v} if S is a (u, v)-separator. Two non-

crossing separators are called parallel . The critical and potential separators can be used

to de�ne a subgraph which contains every 2-connected subgraph separated by a potential

separator. In Lemma 4.1.2 a formal de�nition is given, concluding in the graph GSP having

the mentioned characteristic.

Lemma 4.1.2. Let G be a 2-connected partial 2-tree and S a critical separator cross-

ing a potential separator P = {u, v}. Let Cu := {C ∈ G \ S : u ∈ V (C)} and Cv :=

{C ∈ G \ S : u ∈ V (C)} be the components of G\S which contain u and v, respectively.Then

every 2-connected induced subgraph G′ ⊆ G separated by P is a subgraph of the 2-connected

graph GSP := G [V (Cu) ∪ V (Cv) ∪ S].

Proof. Let S = {s, t} be a critical separator crossing a potential separator P = (u, v).

Also, let G′ be a 2-connected induced subgraph of a partial 2-tree G such that P separates

G′. In the set of components C(G′ \ P) there are two components Cs and Ct containing

vertex s and t, respectively. This is because the separator S crosses P in G. Therefore, all

paths s t in G′ must contain either u or v as otherwise S would not be crossing P . It

must be noted that since |C(G\S)| ≥ 3, see Lemma 4.1.1, in each of the components there

must be a path s t because G is 2-connected. Also let Cu and Cv be the components

containing u and v, respectively.

Assume that there are vertices z1, . . . , zn ∈ V (G′) with z1, . . . , zn /∈ V (Cu) ∪ V (Cv).

If there is a path u v in G containing z1, . . . , zn, P cannot be a separator of G′ since

it does not contain any vertex on the path. Now assume, that there is no path u v

containing vertices in either Cu or Cv. In this case G′ cannot be 2-connected because there

is no path between u v. Since there are exactly two components containing either u or

v, the vertices in these components which are also on a path u v must be preserved in

any 2-connected induced subgraph of G which is separated by P .

Lemma 4.1.2 leads to the following corollary de�ning the maximal 2-connected induced

subgraph G′ of G which is separated by a potential separator of G with respect to all

critical separators of G crossing the potential separator.

Corollary 4.1.3. Let G be a 2-connected partial 2-tree and P a potential separator of

G. Also let S = {S1, . . . , Sl} be the set of all critical separators crossing P . The graph

G?P := G
[⋂

S∈S V (GSP)
]
is the maximal 2-connected subgraph of G with separator P .

Proof. Let G,P,S and G?P be de�ned as above. Also let G′ be a 2-connected induced

subgraph of G with |V (G)| > |V (G?P)|. Assume that G′ is separated by P . Therefore,

there must be a connected component in G′ \ P which is not in G?P \ P . Let CG′ be the

38 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

connected components C(G′ \ P) and CG?
P
the connected components of G?P \ P . Also let

C ∈ CG′ be a connected component such that C /∈ CG?
P
. Since the connected components

in both graphs are maximal, there is no component in CG?
P
which shares any vertex with

C.

Since C /∈ CG?
P
, there is at least one critical separator crossing P which does not result

in the connected component C, therefore, if C is contained in the subgraph, P cannot be

a separator of this graph. �

Therefore G?P is the subgraph of a 2-connected partial 2-tree G obtained by removing

all components Ci ∈ G \ Si which do not contain either u or v for all critical separators Si

crossing P = (u, v). This behavior is then used in the algorithm to compute well-de�ned

subgraphs by decomposing the 2-connected partial 2-trees at their potential separators.

4.1.2 Split Graphs

To compute the 2-connected subgraphs in the algorithms for graph G, the SP-tree decom-

position of G is rooted at a distinguished edge r ∈ E(G) called the root . For a potential

separator P = (u, v) and a root r 6= (u, v) the separator P splits G into two subgraphs

Gruv and Gruv called the split graphs. If P is not a separator of G, which implies that

G?P 6= G, then the operation is called shear split . Let {C1, . . . , Cl} = C(G?P \ P) and

assume without loss of generality that r ∈ E(C1). Then Gruv := G [V (C1) ∪ {u, v}] and
Gruv := G

[⋃l
i=2Cl ∪ {u, v}

]
. The vertices u and v are referred to as base vertices.

Let G be a partial 2-tree and T SP
G = SP(G) the SP-tree decomposition of G. For each

vertex v ∈ V (G), λ(v) denotes the representative of v in the skeleton graph Sλ. This is

necessary as a vertex in v may be associated with more than one node in T SP
G . The set of

all nodes of T SP
G whose skeleton graphs contain a vertex associated with v, called the set

of allocation nodes, is de�ned as followed: Υ(v) :=
{
λ ∈ V (T SP

G) : u ∈ V (Sλ), λ(u) = v
}
.

A shear path P (u, v) is the shortest path λ λ′ with λ ∈ Υ(u) and λ′ ∈ Υ(v) in T SP
G .

The following lemma explains how the critical separators can be found with a SP-tree of

the graph and therefore be used in the algorithm which makes excessive use of the SP-tree

decompositions.

Lemma 4.1.4. Let P (u, v) = (λ1, µ1, . . . , µl−1, λl) be a shear path, then S = {u, v} is

• a potential separator of G if and only if there is no P -node µi such that Sµi contains

a real edge for all i ∈ {1, . . . , l − 1},

• a separator of G if and only if l = 1.

In the �rst case, T is crossed by the critical separators V (Sµi), i ∈ {1, . . . , l − 1}

4.1. THE ALGORITHM � 2-CONNECTED MCS 39

4.1.3 The Methods MwbMatching and Next

The algorithm uses two methodsMwbMatching and Next, respectively. These methods

are used to solve the maximum weighted bipartite matching problem and to �nd the next

vertex which is required to be in a feasible 2-connected common subgraph.

MwbMatching solves the maximum weighted bipartite matching problem. The pa-

rameter of this method are two sets and a set de�ning the bipartite graph. It is assumed

that there is an edge between between each two elements contained in di�erent sets. There-

fore the graph must be bipartite. The third parameter is a function assigning a value to

each edge. The value is in Z+ ∪ {−∞}. The problem can be solved in O(n3) by the

Hungarian method [21].

The algorithm uses SP-trees as uniform data structure. Since all vertices and edges

are contained in S-nodes, these nodes are mainly considered. The skeleton graph of each

S-node contains a cycle. There are real and virtual edges adjacent to the vertices in the

S-node. Given a vertex u and a S-node λ in the SP-tree, Next returns a vertex, which is

adjacent to u, in V (Sλ) and has yet not been included in the common subgraph, i.e. the

next vertex in the cycle with respect to the direction given by the �rst vertex mapped in

the S-node. It must be noted that the method can also return vertices which have already

been considered by the algorithm.

4.2 An Algorithm for the 2-connected Maximum Common

Subgraph Problem in 2-connected Partial 2-Trees

The algorithm consists of three methods. Algorithm 4.1 is the main method and only

called once. For both input graphs the SP-tree decompositions are computed. Next, all

S-nodes in the SP-tree T SP
G of G are compared with all S-nodes in the SP-tree T SP

H of H.

Since all edges of G are contained in the skeleton graphs of the S-nodes, it is not necessary

to compare the P -nodes of the SP-trees. If a P -node is closed and therefore contains a real

edge, all adjacent S-nodes contain a virtual edge. This case is considered in Lines 5 and 7

where also virtual edges are considered if there is an edge in the graph G or H incident to

the same vertices the virtual edge is incident to. Then these trees are rooted at a real edge

contained in the skeleton graph of the currently considered S-nodes. The vertices incident

to the roots are then mapped in the possible subgraph isomorphism. It is su�cient to root

the SP-tree T SP
G at an arbitrary edge, while the SP-tree T SP

H is rooted at each real edge

contained in the skeleton graph of the S-node since all real edges in the skeleton graph of

an S-node are either contained in the 2-connected common subgraph or not. Otherwise

the common subgraph can not be 2-connected.

The SP-trees T SP
G and T SP

H are rooted at the edges (u, v) = r ∈ E(G) and (u′, v′) = r′ ∈
E(H), respectively. Then the size of a maximum common subgraph of the subgraphs Gruv

40 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

Algorithm 4.1 2-MCS(G,H)

Input: Two 2-connected partial 2-trees G and H.

Output: Size of 2-connected-maximum common subgraph problem for partial 2-trees for

the partial 2-trees G and H.

1: T SP
G ← SP(G)

2: T SP
H ← SP(H)

3: mcs← 0

4: for all (λ1, λ2) ∈ S(TG)× S(TH) do

5: r ← arbitrary edge (u, v) ∈ E(λ1) ∩ E(G)

6: root T SP
G at r

7: for all edges r′ = (u′, v′) ∈ E(λ2) ∩ E(H) do

8: root T SP
G at r′

9: p1 ← sMCS-Series(u, v, λ1, u
′, v′, λ2)

10: p2 ← sMCS-Series(u, v, λ1, v
′, u′λ2)

11: mcs ← max {mcs, p1, p2}

12: return mcs + 2

andHr′
u′v′ is computed with respect to the fact that u is mapped to u′ and v is mapped to v′,

respectively. In line 9 and 10 both possible mappings are considered (φ(u) = u′, φ(v) = v′

and φ(u) = v′, φ(v) = u′). This is necessary as the direction of the mapping is an important

factor in Procedure 4.2 which is highlighted in Figure 4.1.

Figure 4.1: Example of the importance to consider both possible mappings of base vertices.

Algorithm 4.1 uses the following procedures to calculate the size of a 2-connected

maximum common subgraph of the 2-connected partial 2-trees G and H:

2-MCS-Series(u, v, λ, u′, v′λ′): This procedure is called for each edge, either real or

virtual. The edges are de�ned by the vertices u, v and u′, v′ and the S-nodes λ and

λ′, respectively. The procedure returns the size of a 2-connected maximum common

subgraph of the graphs Gru,r and H
r′
u′,v′ under the assumption that u is mapped to u′

and v is mapped to v′ in the subgraph isomorphism.

2-MCS-Edge(e, λ, e′, λ′): This procedure is used in 2-MCS-Series(u, v, λ, u′, v′λ′) to

compare edges. Due to the characteristics of the SP-trees it is not possible to simply

4.2. THE ALGORITHM � 2-CONNECTED MCS 41

map vertices if only one vertex is incident to a real edge while the other is incident

to a virtual edge or vice versa.

With these procedures the algorithm computes the 2-connected maximum common

subgraph of two 2-connected partial 2-trees. All combinations of S-nodes are compared,

also each possible mapping regarding the vertices contained in the skeleton graphs of the

S-nodes are considered. In Line 12 the algorithm returns the size of such a subgraph.

The size is increased by 2, as due to the construction of the algorithm, the vertices which

are incident to the root are not included in the result up to this point. If there is no

2-connected maximum common subgraph, the algorithm returns −∞, if there is such a

subgraph, the value returned is always at least three3.

4.2.1 Computation of 2-MCS-Series

Procedure 2-MCS-Series computes a 2-connected maximum common subgraph of two

2-connected subgraph of G and H, respectively. The method is initially called with the

parameters u, v, λ, u′, v′ and λ′ where u and v are adjacent vertices in G and both in

V (Sλ) and u′ is adjacent to v′ and also both vertices are in V (Sλ′). For the common

subgraph to be 2-connected, there must be a path (u, v, v1, . . . , vn, u) in G and a path

(u′, v′, v′1, . . . , v
′
n, u
′) in H which is also contained in the subgraph. The vertices in these

paths are mapped based on the direction given by the initial parameters. The main idea

of the procedure is to �nd feasible cycles and map the vertices contained in these cycles

accordingly.

There are four cases which need to be considered when the vertices are mapped. All

these cases are based on the rooted SP-tree.

(1) At least one edge in the S-nodes incident to both vertices u, v and u′, v′ is virtual and

this edge is a reference to a parent P -node,

(2) the vertices returned by the method Next are both the vertices the procedure was

called with initially in Algorithm 4.1,

(3) only one vertex is a vertex the procedure was called with initially in Algorithm 4.1,

(4) the vertices which are returned by the method Next have not been considered and

the edges are no references to a parent P -node.

The �rst case is considered in Lines 4 and 5. In this case the procedure 2-MCS-Series

is called with the same arguments except for the S-node which is replaced with the parent

S-node. It must be noted that this child-parent relation is given by the rooting of the

SP-trees and therefore the parent is unique. In Line 6 both calls of Next have returned

3In this thesis all graphs are considered to be simple.

42 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

the vertex the procedure was originally called with, therefore the cycle is complete in both

subgraphs. But since there is no guarantee that in both S-nodes the vertices are incident

to a real edge, procedure 2-MCS-MatchEdges must be called. This is necessary because

if at least one edge in the S-nodes is virtual, there may not be a cycle of the same length

in both graphs containing the vertices the procedure was initially called with. If there

are no such cycles, the third case will occur. In Line 7 it is checked whether the common

subgraph would be a cycle in one graph and a path in the other. In this case there is no

feasible 2-connected common subgraph with respect to a subgraph isomorphism mapping

u to u′ and v to v′.

Procedure 4.2 2-MCS-Series(u, v, λ, u′, v′, λ′)

Input: Base vertices u, v of G and u′, v′ of H and S-nodes λ ∈ S(T SP
G) and λ′ ∈ S(T SP

H),

respectively.

Output: Size of a 2-connected maximum common subgraph of the graphs Gru,v and H
r′
u′,v′

under the condition that u and v are mapped to u′ and v′.

1: e = (v, w)← Next(v, λ)

2: e′ = (v′, w′)← Next(v′, λ′)

3: mcs← 0

4: if e = ref(λ) then return MSC-Series(u, v, pS(λ), u′, v′, λ′)

5: if e′ = ref(λ′) then return MSC-Series(u, v, λ, u′, v′, pS(λ′))

6: if w = u and w′ = u′ then return MatchEdge(e, λ, e′, λ′)

7: if w = u xor w′ = u′ then return −∞
8: mcs← MatchEdge(e, λ, e′, λ′)+ MCS-Series(u,w, λ, u′, w′, λ′)

9: if e /∈ E(G) or e′ /∈ E(H) then

10: if e ∈ E(G) then M ← {λ}
11: else M ← sC(e)

12: if e′ ∈ E(H) then M ′ ← {λ′}
13: else M ′ ← sC(e′)

14: for all (η, η′) ∈M ×M ′ do
15: p←MCS-Series(u,w, η, u′, w′, η′)

16: mcs← max {mcs, p}

17: return mcs

If none of these three cases applies, the size of a 2-connected maximum common sub-

graph is computed recursively. In addition to the call of 2-MCS-Series the procedure

2-MCS-MatchEdges is called, see Line 8. This is necessary since at least one of the

edges may be virtual in the skeleton graph of the S-nodes. The recursive call, where the

4.3. ANALYSIS OF THE ALGORITHM 43

parameters u and u′ are the same as in the initially call, is used to complete the cycle

starting and ending at the vertices u and u′, respectively.

Starting in Line 9 and ending in Line 16, a deformed case is considered. In this case,

at least one of the new vertices is incident to a virtual edge. Since the cycle can contain

vertices which are in the skeleton graph of di�erent S-nodes, the vertices contained in the

skeleton graphs of the child S-nodes are considered.

4.2.2 Computation of 2-MCS-MatchEdges

Procedure 2-MCS-MatchEdges is called whenever two vertices are considered to be

mapped in a common subgraph. There are di�erent cases with respect to the edge in the

skeleton graph incident to both, the vertex v, v′ and the vertices w,w′ returned by the

method Next.

If one of the edges is real while the other is virtual, the procedure checks whether

the virtual edge is pertinent to a closed P -node. If so, 0 is returned and the algorithm

continues, otherwise it returns −∞ as this would result in a common subgraph which can

not be 2-connected. If at least one of the edges is real, the procedure returns 0 since

this case can only apply if both edges are real, as otherwise the �rst case would apply.

When both edges are real, the addition of the mapping with w 7→ w′ is still a feasible

common subgraph and therefore procedure 2-MCS-Series can continue to compute a

feasible 2-connected common subgraph.

If none of these cases occur, both edges must be virtual. In this case, all child S-nodes

are compared. This is done with the maximum weighted bipartite matching problem, since

only S-nodes in the SP-tree of G need to be compared to S-nodes in the SP-tree of H. If

the matching has size 0, there is no feasible common subgraph of any two child S-nodes.

Therefore in the common subgraph computed up to this point, the vertices v, w and v′, w′,

respectively, are not connected and the common subgraph can not be 2-connected.

4.3 Analysis of the Algorithm

In this section it is shown that the algorithm has a polynomial running time. To do

so, it is shown that the number of split graphs is polynomial in the size of a graph and

that therefore the algorithm can be transformed into a dynamic programming algorithm

where the table has a polynomial size. Later it is shown that due to special characteristics

of the SP-tree of an outherplanar graph the algorithm has a better running time on an

outerplanar graph than on a partial 2-tree.

Lemma 4.3.1. Let G be a 2-connected partial 2-tree and n = |V (G)|, then the number of

split graphs of G is O(n2).

44 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

Procedure 4.3 2-MCS-Edges(e, λ, e′, λ′)

Input: Edges e = (u, v) ∈ E(Sλ) and e′ = (u′, v′) ∈ E(S′λ)

Output: Size of the 2-connected maximum common subgraph of the graphs Gru,v and

Hr′
u′,v′ under the condition that u and v are mapped to u′ and v′.

1: if e ∈ E(G) xor e′ ∈ E(H) then return −∞

2: if e or e′ is a real edge in Sλ resp. Sλ′ then return 0

3: M ← cS(e)

4: M ′ ← cS(e′)

5: for all f = (η, η′) ∈M ×M do

6: w(f)←MCS-Series(u, v, η, u′, v′η′)

7: p←MwbMatching(M,M ′, w)

8: if p = 0 and e /∈ E(G), e′ /∈ E(H) then return −∞

9: return p

Proof. The split graphs Gru,v of a graph G are de�ned by a potential separator P = {u, v}
of G and an edge r ∈ E(G). The edge r is used to root the SP-tree of G and thus in

combination with P is used to determine which components are deleted from G to compute

the split graph. As a potential separator consists of two vertices, there are O(n2) potential

separators and the number of split graphs for a potential separator P is c(P) := |C(G?P \P)|.
If c(P) is greater than 2, the separator must be a separator of G. In Lemma 4.1.1

it is stated, that the connected components resulting from the removal of the separator

are the S-nodes pertinent to the P -node whose skeleton graph contains the separator.

Therefore c(P) < n and in this case the number of these separators must be in O(n2).

Then, if c(P) is equal 2, there are exactly two connected components if P is removed.

Thus O(n2) split graphs can be computed with such a separator. Since the number of

connected components gained by the removal of a potential separator is always bounded

like the number of connected components gained by the removal of a separator, the number

of split graphs is bounded by O(n2). �

Theorem 4.3.2. The 2-connected maximum common subgraph problem for two partial

2-trees G and H can be solved in O(n6), where n = max {|V (G)|, |V (H)|}.

Proof. To proof the running time of the algorithm, the procedures 2-MCS-Series and

2-MCS-MatchEdges are transformed into dynamic programming algorithms. The split

graphs, the 2-connected maximum common subgraphs, are de�ned by the parameters

given to these procedures. Therefore the cells of the table are associated with a pair of

split graphs, one split graph of G and one split graph of H. As the number of split graphs

of G and H, respectively is bounded by O(n2), see Lemma 4.3.1. The size of the table

storing the size of the 2-connected maximum common subgraphs of two split graphs is

4.3. ANALYSIS OF THE ALGORITHM 45

bounded by O(n4). It must be noted that the number of edges and vertices in both graphs

is obviously bounded linear by n, but this is also true for the virtual edges in the SP-tree

since a virtual edge represents a path in the graph.

Without loss of generality it can be assumed that, whenever procedure 2-MCS-Series

is called, the size of all smaller split graphs, than the one de�ned by the parameters the

procedure is called with, are already computed. As the smallest split graph consists of a

single edge and two vertices this can easily be accomplished. Since these results can be

used in time O(1), the dominating part of the procedure can be found in Line 14. This loop

is only called if at least one considered edge, given by the parameters, is a virtual edge. As

there are only O(n) S-nodes pertinent to any P -node in a SP-tree, this loop requires time

O(n2). Therefore the total running time needed to compute all calls of 2-MCS-Series is

O(n6).

In Procedure 2-MCS-Edges is a loop in Line 5 which requires running time O(n2)

due to the same arguments stated above. Also the method MwbMatching is used. The

maximum weighted bipartite matching problem can be solved in time O(n3) as described

before. The matching problem only needs to be solved if both edges are virtual edges, as

otherwise the procedure returns in Line 1 if there is one real edge and one virtual edge,

and returns in Line 2 if both edges are real. As the number of real and virtual edges is

linear in n, there are O(n2) calls of MbwMatching and therefore the total running time

needed to compute all calls of 2-MCS-MatchEdegs is O(n5).

So all in all the running time is dominated by the time needed to compute 2-MCS-

Series, so the 2-connected maximum common subgraph problem for partial 2-trees can

be solved in time O(n6). �

Since each outerplanar graph is also a partial 2-tree, the algorithm can also be used to

solve the 2-connected maximum common subgraph problem for outerplanar graphs. SP-

trees of outerplanar graphs have a characteristic which can be used in the analysis of the

running time of the algorithm. This characteristic can be found in Lemma 4.3.3.

Lemma 4.3.3. Let G be a 2-connected partial 2-tree and T SP
G the SP-tree decomposition

of G, then G is outerplanar if and only if all P -nodes in T SP
G have degree two.

Proof. The class of outerplanar graphs can be de�ned by the forbidden minors K4 or K2,3.

Assume that there is a P -node λ in VP (T SP
G) with degree of at least three. Then there

are at least three paths u v where u, v ∈ V (Sλ) and therefore G has a K2,3 as minor

since there are two vertices connected by three paths containing at least one vertex not in

V (Sλ). �

As each P -node in a 2-connected outerplanar graph has degree two, the following

theorem is implied by the proof of Theorem 4.3.2.

46 CHAPTER 4. THE 2-CONNECTED MCS IN PARTIAL 2-TREES

Theorem 4.3.4. The 2-connected maximum common subgraph problem for two outerpla-

nar graphs G and H can be solved in O(n4), where n = max {|V (G)|, |V (H)|}.

Proof. In both procedure 2-MCS-Series and 2-MCS-MatchEdges, there are loops4

over the Cartesian product of two sets M and M ′. These loops are only required if there

is at least one virtual edge considered. These sets contain all S-nodes pertinent to the

considered virtual edges which have not already been considered or the current S-node,

if the edge is not virtual. Since there is exactly one S-node for each graph, the sets

contain exactly one pair of S-nodes, therefore the loop in Procedure 2-MCS-Series has

running time O(1) and also the matching can be solved in time O(1) since there is only

one possibility. Thus all in all, the running time for the procedure 2-MCS-Series is O(n4)

and for procedure 2-MCS-Edges O(n3).

Therefore the running time of the algorithm is still dominated by the Procedure 2-

MCS-Series, but if both graphs are outerplanar, the algorithm computes the 2-connected

maximum common subgraph in O(n4). �

4.4 Summary

In this section an algorithm for the 2-connected maximum common subgraph problem for

partial 2-trees is presented. First it is explained why the approach used presented in [4]

cannot be easily extended to work with partial 2-trees. Then, separators are introduced and

a decomposition into subgraphs, called split graphs, based on separators and a rooted SP-

tree are presented. Using these split graphs the 2-connected maximum common subgraph

of two 2-connected partial 2-trees can be computed. The separators are used in the analysis

of the running time as it can be shown that the number of split graphs de�ned with these

separators is polynomial in the size of a graph and that each 2-connected subgraph of the

input graph is a 2-connected subgraph of such a split graph.

4See Line 14 and 5, respectively.

Chapter 5

The Block-and-Bridge Preserving

Maximum Common Subgraph

Problem in Partial 2-Trees

The restriction that both input graphs must be 2-connected partial 2-trees is quite hard as

one of the applications of the maximum common subgraph problem is �nding similarities

of molecules [25] which are mostly not 2-connected when represented as graph. In this

chapter another restricted version of the maximum common subgraph problem for partial

2-trees is considered. The restrictions regarding the maximum common subgraph problem

for partial 2-trees are introduced in [26] and also used in [4].

Let G and H be arbitrary partial 2-trees, φ a common subgraph isomorphism of G′ ⊆
G and H ′ ⊆ H, then the common subgraph is called block-and-bridge preserving if the

following conditions are satis�ed:

(BBP1) For any two vertices u, v ∈ V (G′), u and v are in the same block in G′ if and

only if they are in the same block in G. The same must be true for each pair of

vertices in H ′.

(BBP2) Let u, v ∈ V (G′) then u and v are contained in a bridge node if and only if u

and v are contained in a bridge node in G. As above the same must be true for each

pair of vertices in H ′.

The problem of �nding a maximum common subgraph satisfying restrictions (BBP1)

and (BBP2) is called block-and-bridge preserving maximum common subgraph problem. In

this chapter it is shown that the block-and-bridge preserving maximum common subgraph

problem in partial 2-trees can be solved in polynomial time. To do so, the algorithm

presented in Chapter 4 is extended.

47

48 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

5.1 Characteristics of a Block-and-Bridge Preserving Maxi-

mum Common Subgraph

Before presenting the extension of the algorithm to solve the block-and-bridge preserving

maximum common subgraph problem in partial 2-trees, there is need for some background

information about the restrictions. It is easy to see that a 2-connected maximum common

subgraph of two 2-connected partial 2-trees is also a block-and-bridge preserving maximum

common subgraph of these graphs. Hence each feasible solution of the block-and-bridge

preserving maximum common subgraph problem of 2-connected partial 2-trees is a feasible

solution of the 2-connected maximum common subgraph problem in 2-connected partial 2-

trees. Examples of feasible and infeasible block-and-bridge preserving maximum common

subgraphs can be found in Figure 5.1.

Lemma 5.1.1. Let G and H be two graphs, φ a common subgraph isomorphism of G′ ⊆ G
and H ′ ⊆ H, then any two vertices in G or H which are in di�erent 2-connected components

cannot be in the same 2-connected component of G′ resp. H ′.

Proof. Let G,H,G′, H ′ and φ be de�ned as above, also let u, v ∈ V (G) be two vertices in

di�erent 2-connected components in G. There is at least one vertex w ∈ V (G) which is

contained in all paths u v as there is at least one cutvertex between di�erent 2-connected

components. Otherwise, if there is a path u v which does not contain w, u and v would

be in the same 2-connected component. If u, v and w are mapped to u′, v′ and w′ in a

common subgraph and u′, v′ are in the same 2-connected component, then there is a path

u′ v′ in the common subgraph which does not contain w′. As there is no mapping for

such a path in G, the common subgraph cannot be an induced common subgraph. �

Lemma 5.1.2. Vertices associated with one bridge in G or H cannot be contained in one

2-connected component in a common subgraph of G and H.

Proof. Let u and v be vertices contained in one bridge of G. If u, v are mapped to u′, v′ ∈
V (H) where u′, v′ are contained in a 2-connected component C. Let C = {u′, v′, w1, . . . , wk}
and w1, . . . , wk ∈ V (H). Therefore, u′, v′, w1, . . . , wk are the vertices contained in the 2-

connected component, then there is no feasible mapping for w1, . . . , wk in G because, if

there were such a mapping, u and v could not be a bridge. �

Lemma 5.1.1 and Lemma 5.1.2 are valid for arbitrary maximum common subgraphs

regardless restrictions (BBP1) and (BBP2) required for block-and-bridge preserving max-

imum common subgraphs. Concerning the restrictions it is not possible to map vertices in

a 2-connected component of G to vertices in di�erent 2-connected component in H, as this

would be contradicting condition (BBP1). While it is possible that a vertex is in di�erent

2-connected components, that can only be the case if and only if the vertex is a cutvertex.

5.1. CHARACTERISTICS OF A BLOCK-AND-BRIDGE PRESERVING MCS 49

(a) (b) (c)

Figure 5.1: Maximum common subgraph which is not block-and-bridge preserving because ver-

tices in a non-bridge block are mapped to vertices in a bride block (a) and maximum common

subgraphs which are block-and-bridge preserving (b) and (c).

Two vertices are considered to be in di�erent 2-connected components if and only if there is

no 2-connected component containing both vertices. Also due to restriction (BBP2) each

two vertices contained in one bridge in a common subgraph of G and H must be contained

in one bridge in G and H. Therefore it is not necessary to compare non-bridge and bridge

blocks of the BC-tree decompositions of the graphs, as vertices contained in the �rst can

never be mapped to vertices in the latter and vice versa if they are not for cutvertices.

As vertices in one non-bridge block cannot be mapped to vertices in a bridge block or to

vertices in more than one non-bridge block if not both vertices are cutvertices, Algorithm

4.1 presented in Chapter 4.2 is required to behave di�erently to compute a block-and-

bridge preserving maximum common subgraph instead of a 2-connected maximum common

subgraph if two cutvertices are mapped, otherwise one of the restrictions (BBP1) or (BBP2)

would be disregarded.

(a) (b)

Figure 5.2: Example of Lemma 5.1.1 in (a) and Lemma 5.1.2 in (b) where the edges and vertices

highlighted in red problematic for a block-and-bridge preserving common subgraph.

Figure 5.2 highlights the problematic edges and vertices mentioned in Lemma 5.1.1

and Lemma 5.1.2. In Figure 5.2(a) the shown mapping is not feasible, because the edge

highlighted in red has no corresponding edge in the other graph. Whenever vertices in

two connected components are mapped to vertices in one 2-connected component, the a

common subgraph can never be 2-connected. In Figure 5.2(b) the shown mapping is not

feasible, again due to the edge highlighted in red has no corresponding edge in the other

graph. Hence, a common subgraph of a bridge and a 2-connected component cannot be

2-connected.

50 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

Partial 2-trees are not necessarily 2-connected. Therefore it is not possible to represent

all partial 2-trees by their unique SP-tree decomposition. To get a uniform and unique

representation the BC-tree decomposition described in Section 2.3.3 is used, because a

unique BC-tree decomposition exists for arbitrary partial 2-trees. The main idea of the

extension of the algorithm presented in Chapter 4 is to behave di�erently if and only if two

cutvertices are mapped. If the algorithm would behave di�erently at any other condition it

would not compute a block-and-bridge preserving maximum common subgraph as stated

before. Hereby it can be guaranteed, that the algorithm behaves exactly the same if both

input graphs are 2-connected partial 2-trees.

For the reader's convenience Greek uppercase letters are used to describe B- and C-

nodes of the BC-trees, whereas Greek lowercase letters are used to describe the S- and

P -nodes of the SP-trees contained in the B-Nodes of the BC-trees. Also the elements of

a BC- and SP-tree decomposition are called nodes and edges whereas the elements of the

graphs G and H are called vertices and edges.

a

b

c d

e

f

g h

i

j

k l

m

n

o

(a)

Λ1 Λ2

Λ3

Λ4 Λ5 Λ6

λ5

λ6λ7

λ8

j
o
l

j

k l

j

l

i n

m

l
j

kd

d k

d

h

λ1

λ2 λ3

λ4

e
g

c

e

bce

c

a f

e

c

b

(b)

Figure 5.3: A graph G (a) and its BC-tree decomposition TBC
G with an example of the naming

of the nodes of the BC-tree and the associated SP-trees (b). B-nodes are blue, C-nodes gray,

S-nodes green and P -nodes red. The associated skeleton graph is drawn next to the nodes.

Due to the construction of the algorithm, just as in Chapter 4 a child-parent relation

is needed. As the nodes in BC-trees are associated with skeleton graphs which are either

5.1. CHARACTERISTICS OF A BLOCK-AND-BRIDGE PRESERVING MCS 51

associated with a bridge or a SP-tree, the SP-trees needs to have a child-parent relation,

too. This relation must be implicitly given by the child-parent relation of the BC-tree.

In addition to comparing the nodes, the BC-trees are rooted at edges contained in the

skeleton graphs of these nodes. With rooting the BC-tree at a B-node all SP-trees in the

non-bridge nodes are rooted implicitly. This is done by rooting the SP-trees contained in

the non-bridge nodes after the following rules. Let TBC be a BC-tree and Λ ∈ VB(TBC)

the B-node the BC-tree is rooted at, then there are two cases:

Λ ∈ VBr(T
BC) Thus SΛ contains exactly one edge, this edge is the root of the tree.

Λ ∈ VBl(T
BC) Hence SΛ contains at least three edges, one edge needs to be distinguished

to be the root. Then T SP
Λ = SP(SΛ) is rooted as described in the previous chapters.

All SP-trees in child non-bridge nodes Ξ of B-node Λ are rooted in the following way.

Let T SP
Ξ = SP(SΞ) be the SP-tree of the skeleton graph contained in the Bl-node. Then

there are two cases, either Ξ is the root or there is a vertex u ∈ V (SΞ) the vertex which is

pertinent to the C-node which is the parent of Ξ such that u ∈ V (SΛ). In the �rst case,

each vertex is chosen as root once during the algorithm. In the second case, the root is

given implicit by the following rules.

(RBL1) If ∃ξ ∈ VP (T SP
Ξ) such that u ∈ V (Sξ), then T

SP
Ξ is rooted at ξ.

(RBL2) If @ξ ∈ VP (T SP
Ξ) such that u ∈ V (Sξ), then there is exactly one π ∈ VS(SΞ) such

that u ∈ V (Sπ). In this case T SP
Ξ is rooted at π.

As T SP
Ξ can be rooted at a P -node, there is no edge at which the SP-tree must be

rooted. In the case that no such edge exists the SP-tree is simply rooted at a single vertex.

During Algorithm 5.1 this is only the case when two cutvertices are mapped. For the

initial Bl-nodes, there is always an edge at which they are rooted. These rooted BC- resp.

SP-trees are especially used in Procedure 5.3. Let G be a graph and u ∈ V (G) such that u

is a cutvertex, here cB(u) (as seen in lines 3 and 4) denotes all B-nodes which are children

of the C-node Λ with u = V (SΛ). Also let T SP be a SP-tree and λ ∈ VP (T SP), then cSP(λ)

(as seen in line 13) denotes all S-nodes which are children of λ. This case is related to

(RBL2), as all S-nodes which contain virtual edges pertinent to λ are children of λ.

Let TBC
G be the BC-tree decomposition of a partial 2-tree G. Also let r ∈ E(G) be an

edge of G, then TBC,r
G denotes the BC-tree rooted at r. Let u ∈ V (G) be a cutvertex. Also

let C = {C1, C2, . . . , Cn} be the connected components of G−u. Without loss of generality

let C1 be the connected component such that r ∈ E(C1). Then TBC,r
G,u denotes the induced

subgraph G[V (C1)∪{u}] and TBC,r
G,u denotes the induced subgraph G[

⋃n
i=2Ci∪{u}], called

the block split graphs of G.

52 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

Grce

Grce

a

b

c d

e

c

e

f

h

i

j

k l

m

n

o

(a)

TBC,r
G,k

TBC,r
G,k

a

b

c d

e

f

g h

i

j

k

k
l

m

n

o

(b)

S

P

S S
j
o
l

j

k l

j

l

i n

m

l
j

(c)

S

P

S S

j
o
l

j

k l

j

l

i n

m

l
j

(d)

Figure 5.4: Examples of the di�erent split graphs of the graph G in Figure 5.3(a) rooted at

r = (d, h). In (a) the split graphs Gr
ce and Gr

ce are shown, while in (b) the block split graphs

TBC,r
G,k and TBC,r

G,k . The rooting of a SP-tree given by the block split graph in (c) in Figure (d)

and a rooting of a SP-tree if the cutvertex the block split graph would be split at j or l.

5.2. AN ALGORITHM FOR THE BLOCK-AND-BRIDGE PRESERVINGMAXIMUMCOMMON SUBGRAPH PROBLEM IN PARTIAL 2-TREES53

5.2 An Algorithm for the Block-and-Bridge Preserving Max-

imum Common Subgraph Problem in Partial 2-Trees

The Algorithm used to solve the block-and-bridge preserving maximum common subgraph

problem in partial 2-trees is an extension of Algorithm 4.1. Therefore the structure and

functioning is similar. The Algorithm itself uses the following procedures:

BBP-MCS(G,H) computes the size of a block-and-bridge preserving maximum common

subgraph of two partial 2-trees G andH. In this method, the BC-tree decompositions

are computed and rooted accordingly while all feasible combinations of B-nodes of

both BC-trees are compared.

BBP-MCS-Series(u, v, λ, u′, v′λ′) computes the maximum common subgraph of the

SP-trees in which the S-nodes λ and λ′ are contained. The computation is done with

respect to the root chosen in BBP-MCS.

BBP-MCS-Cut(u, u′) computes the maximum common subgraph of two bridges with

respect to the chosen root in the case that u and u′ are mapped. This method is one

of the extensions to Algorithm 4.1.

BBP-MCS-Edges(e, e′) is used in BBP-MCS-Series to compute the 2-connected

maximum common subgraph of two non-bridge nodes by verifying that two vertices

can be mapped, taking their incident edges in the skeleton graph into account.

Algorithm 5.1 is the main method of the algorithm. As Algorithm 4.1 compares all

S-nodes of the SP-trees, all feasible combinations of B-nodes in the BC-tree decomposition

are compared. Due to restrictions (BBP1) and (BBP2) only nodes of the same type need to

be compared as it is not feasible to map an edge contained in a bridge to an edge contained

in a non-bridge node. Also there is no need to compare multiple non-bridge nodes and

compare them to a single non-bridge node as this contradicts condition (BBP1). Hence

all suitable nodes are compared with each other in Line 4 and 14, respectively. In these

loops, the BC-trees are rooted accordingly. It must be noted, that both, the BC-tree

decomposition and the SP-tree decomposition of non-bridge blocks can be computed in

linear time [27] and [17], respectively.

In Line 4 the non-bridge blocks are mapped. This is done in exactly the same way as

in Algorithm 4.1. The argumentation why it is su�cient to compare one edge to all other

in each S-node is exactly the same. One of the additions to the algorithm can be found in

Lines 11 and 12, where in addition to sMCS-Series the Procedure sMCS-Cut is called

also. Since there can be cutvertices, all adjacent B-nodes in the BC-tree decompositions

need to be taken into account, too.

In Line 14 bridge nodes are compared. Due to the structure of bridges only two com-

binations of mappings are possible for each bride. If the bridge is not contained in a

54 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

Procedure 5.1 BPP-MCS(G,H)

Input: Two partial 2-trees G and H.

Output: Size of a block-and-bridge preserving preserving maximum common subgraph

for the partial 2-trees G and H.

1: TBC
G ← BC(G)

2: TBC
H ← BC(H)

3: mcs ← 0

4: for all (Λ,Λ′) ∈ VBl(TBC
G)× VBl(TBC

H) do

5: T SP
Λ ← SP(SBCΛ)

6: T SP
Λ′ ← SP(SBCΛ′)

7: for all (λ, λ′) ∈ VS(T SP
Λ)× VS(T SP

Λ′) do

8: r ← arbitrary real edge (u, v) ∈ E(Sλ); root TBC
G at r

9: for all real edges r′ = (u′, v′) ∈ E(Sλ′) do

10: root TBC
H at r′

11: p1 ← sMCS-Series(u, v, λ, u′, v′, λ′) + sMCS-Cut(u, u′)

12: p2 ← sMCS-Series(u, v, λ, v′, u′λ′) + sMCS-Cut(u, u′)

13: mcs ← max {mcs, p1, p2}

14: for all (Λ,Λ′) ∈ VBr(TBC
G)× VBr(TBC

H) do

15: r = (u, v)← E(SBCΛ); root TBC
G at r

16: r′ = (u′, v′)← E(SBCΛ′); root TBC
H at r′

17: p1 ← sMCS-Cut(u, u′) + sMCS-Cut(v, v′)

18: p2 ← sMCS-Cut(u, v′) + sMCS-Cut(v, u′)

19: mcs ← max {mcs, p1, p2}

20: return mcs +2

maximum common subgraph, but one of the vertices in the bridge is, this vertex is also

contained in the adjacent nodes regarding the BC-tree. In Line 20 before the result is

returned, it is increased by two. This is because the two nodes incident to the chosen

root are never counted in any method called by Algorithm 5.1. Thus to return the correct

result, this increment is necessary.

5.2.1 Computation of BBP-MCS-Series

Procedure 5.2 is the extended version of Procedure 4.2. The crucial changes can be found

in Lines 9 and 9 where also the result of Procedure BBP-MCS-Cut is added to the

size of the computed subgraph. Since the graph may contain cutvertices, all B-nodes in

the BC-trees which are adjacent to the C-node associated with the cutvertex need to be

considered for the common subgraph. The rest of the procedure is the same. There are

no more changes necessary for the reasons discussed above. Due to this change and the

5.2. THE ALGORITHM � BLOCK-AND-BRIDGE PRESERVING MCS 55

fact that it only a�ects graphs which contain cutvertices the algorithm behaves exactly

the same as described in Chapter 4 if there are no cutvertices in at least one of the input

graphs.

Procedure 5.2 BBP-MCS-Series(u, v, λ, u′, v′λ′)

Input: Base vertices u, v of G and u′, v′ of H and S-nodes λ ∈ S(TG) resp. λ′ ∈ S(TH).

Output: Size of a block-and-bridge preserving maximum common 2-connected subgraphs

of the split graphs Gruv and H
r′
u′v′ under the condition that u and v are mapped to u′

and v′.

1: e = (v, w)← Next(v, λ)

2: e′ = (v′, w′)← Next(v′, λ′)

3: mcs← 0

4: if e = ref(λ) then return MSC-Series(u, v, pS(λ), u′, v′, λ′)

5: if e′ = ref(λ′) then return MSC-Series(u, v, λ, u′, v′, pS(λ′))

6: if w = u and w′ = u′ then return MatchEdge(e, λ, e′, λ′)

7: if w = u xor w′ = u′ then

8: return −∞
9: mcs ←MatchEdge(e, e′) + sMCS-Series(u,w, λ, u′, w′, λ′)

+ sMCS-Cut(w,w′) + 1

10: if e /∈ E(G) or e′ /∈ E(H) then

11: if e ∈ E(G) then M ← {λ}
12: else M ← sC(e)

13: if e′ ∈ E(H) then M ′ ← {λ′}
14: else M ′ ← sC(e′)

15: for all (η, η′) ∈M ×M ′ do
16: p←MCS-Series(u,w, η, u′, w′, η′) + sMCS-Cut(w,w′)

17: mcs← max {mcs, p}

18: return mcs

5.2.2 Computation of PPB-MCS-Cut

Since there are no cutvertices in 2-connected graphs, they are not considered by the al-

gorithm presented in Chapter 4. Therefore, the addition of Procedure 5.3 is the biggest

change of this algorithm. Whenever two vertices are mapped in Procedure 5.2 Line 9, it is

checked whether both vertices are cutvertices. If so, all blocks pertinent to the cutvertices

are compared. To do so, all children of the cutvertices are considered in Lines 3 and 4.

Like in Algorithm 5.1 only the same types of nodes in the BC-trees need to be compared

since the common subgraph still needs to be 2-connected.

56 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

Cutvertices are also mapped whenever two vertices in a bridge are mapped, as all

vertices in a bridge node are cutvertices per de�nition. So there is no need for an additional

procedure for bridges, as this case is covered by Procedure 5.3.

The main idea of the procedure is to compare all child B-nodes and �nd the greatest

block-and-bridge preserving common subgraph of the block split graphs TBC,r
G,u and TBC,r

H,u′ .

Since the result must be block-and-bridge preserving, non-bridge nodes in TBC,r
G,u are only

compared with non-bridge nodes in TBC,r
H,u′ , see Line 6 and the same goes for bride nodes,

see Line 21.

When comparing two non-bridge nodes the result cannot be the size of an arbitrary

block-and-bridge preserving maximum common subgraph. The crucial point is that the

cutvertices must be mapped accordingly. This is ensured in Line 17 where the arbitrary

real edge must be incident to the cutvertex, and also in Line 18 where all edges which are

considered must be incident to the cutvertex. It is su�cient to consider only an arbitrary

edge of one of the S-nodes since it must be contained in the block-and-bridge preserving

common subgraph if all real edges and vertices in the skeleton graph of that S-node are

contained in the common subgraph.

The comparison of bridge nodes is simpler since the only vertex in a bridge not already

considered is the other vertex in the bridge. The result of the mapping of these cutvertices

is then taken into account. The computation of the best matching can be done by solving

a maximum bipartite matching problem.

LetBrG1 , Br
G
2 , . . . , Br

G
h , Bl

G
1 , Bl

G
2 , . . . , Bl

G
i andBrH1 , Br

H
2 , . . . , Br

H
j , Bl

H
1 , Bl

H
2 , . . . , Bl

H
k

be all child nodes of the mapped C-nodes in G resp. H. Also let u and u′ be the vertices in

G resp. H associated with the mapped C-nodes. To compare all blocks, an edge-weighted

bipartite graph F = (X ∪ Y,E,w) is constructed:

X =
{
BrG1 , Br

G
2 , . . . , Br

G
h , Bl

G
1 , Bl

G
2 , . . . , Bl

G
i

}
(5.1)

Y =
{
BrH1 , Br

H
2 , . . . , Br

H
j , Bl

H
1 , Bl

H
2 , . . . , Bl

H
k

}
(5.2)

E = {(x, y) : x ∈ X, y ∈ Y } (5.3)

The weight w : E → N ∪ {−∞} is the size of a block-and-bridge preserving maximum

common subgraph if the vertices in the blocks incident to the edge are mapped. For two

non-bridge blocks, there may be multiple possible combinations whereas for two bridge

blocks, there is only one possible combination as the skeleton graph of a bridge contains

exactly two vertices and one edge incident to those vertices. All edges incident to nodes

associated with a bridge and a non-bridge block have weight −∞ as a mapping of vertices

contained in the skeleton graphs of these nodes contradicts to restriction (BBP1). Therefore

5.2. THE ALGORITHM � BLOCK-AND-BRIDGE PRESERVING MCS 57

Procedure 5.3 BBP-MCS-Cut(u, u′)

Input: Two cutvertices u ∈ V (G), u′ ∈ V (H).

Output: Size of a block-and-bridge preserving maximum common subgraph of the block

split graphs TBC,r
G,u and TBC,r

H,u′ under the condition that u is mapped to u′.

1: if u or v is not pertinent to a node C-node then

2: return 0

3: M ← cB(u)

4: M ′ ← cB(u′)

5: mcs ← 0

6: for all f = (Λ,Λ′) ∈ VBl(M)× VBl(M) do

7: T SP
Λ ← SP(SBCΛ)

8: T SP
Λ′ ← SP(SBCΛ′)

9: if ∃λ ∈ VP (T SP
Λ) such that u ∈ V (Sλ) then

10: N ← cSP(λ)

11: else N ← {λ}

12: if ∃λ′ ∈ VP (T SP
Λ′) such that u′ ∈ V (Sλ′) then

13: N ′ ← cSP(λ′)

14: else N ′ ← {λ′}

15: mcstmp ← 0

16: for all (λ, λ′) ∈ N ×N ′ do
17: (u, v)← arbitrary edge in E(Sλ) ∩ E(G)

18: for all edges (u′, v′) ∈ E(Sλ′) ∩ E(H) do

19: mcstmp ← max {mcstmp, sMCS-Series(u, v, λ, u′, v′, λ′)}

20: w(f)← mcstmp

21: for all f = (η, η′) ∈ VBr(M)× VBr(M) do

22: (u, v)← Next(u, λ)

23: (u′, v′)← Next(u′, λ′)

24: w(f)← sMCS-Cut(v, v′) + 1

25: mcs ←MwbMatching(M,M ′, w)

26: return mcs

w(Λ,Λ′) =

1 + maxv,v′,λ,λ′ {BPP-MCS-Series(u, v, λ, u′, v′, λ′))} , (1)

1 +BBP-MCS-Cut(v, v′), (2)

−∞, otherwise.

(5.4)

Case (1) is selected if Λ ∈ VBl(TBC
G) and Λ′ ∈ VBl(TBC

H) and therefore both nodes are

non-bridge nodes and the maximum is calculated over λ ∈ VS(skel(Λ)), λ′ ∈ VS(skel(Λ′), v ∈

58 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

Er(skel(λ)) and v′ ∈ Er(skel(λ′)). Case (2) is selected if Λ ∈ VBr(TBC
G) and Λ′ ∈ VBr(TBC

H)

and therefore both nodes are bridge nodes and v resp. v′ are unique as they are the other

vertex contained in the skeleton graph of the bridge node.

5.2.3 Computation of BBP-MCS-Edges

Since the result of the algorithm still needs to be 2-connected, Procedure 5.4 is not changed.

This is due to the fact that the algorithm needs to behave exactly the same when it comes

to non-bridge blocks as presented in Chapter 4. The procedure is listed below for an

complete overview of the algorithm.

Procedure 5.4 BBP-MCS-Edges(e, λ, e′, λ′)

Input: Edges e = (u, v) ∈ E(Sλ) and e′ = (u′, v′) ∈ E(S′λ)

Output: Size of a block-and-bridge preserving maximum common subgraph of the block

split graphs TBC,r
G,u and TBC,r

H,u′ under the condition that u is mapped to u′.

1: if e ∈ E(G) xor e′ ∈ E(H) then return −∞

2: if e or e′ is a real edge in Sλ resp. Sλ′ then return 0

3: M ← cS(e)

4: M ′ ← cS(e′)

5: for all f = (η, η′) ∈M ×M do

6: w(f)←MCS-Series(u, v, η, u′, v′η′)

7: p←MwbMatching(M,M ′, w)

8: if p = 0, e /∈ E(G) or e′ /∈ E(H) then return −∞

9: return p

5.3 Correctness and Running Time

Now it has to be proven, that Algorithm 5.1 computes a block-and-bridge preserving max-

imum common subgraph of two partial 2-trees in polynomial time. First it is shown that

the result of the algorithm is a block-and-bridge preserving common subgraph. Then it is

argued that the common subgraph is also a maximum common subgraph. Last it is proven

that this block-and-bridge preserving maximum common subgraph can be computed in

polynomial time hence the block-and-bridge preserving maximum common subgraph prob-

lem in partial 2-trees is solvable in polynomial time. Later it is shown that these results,

if applied to outerplanar graphs, have a better running time than any other algorithms

known right now.

Lemma 5.3.1. The common subgraph of two partial 2-trees computed by Algorithm 5.1 is

a block-and-bridge preserving common subgraph.

5.3. CORRECTNESS AND RUNNING TIME 59

Proof. The only change in Procedure 5.2 is the addition in Line 9 where Procedure 5.3 is

also added to the result. This is only relevant if both vertices which are mapped in this

step are cutvertices as otherwise zero is returned in Line 2. If both vertices are cutvertices,

all child nodes in the BC-trees are compared. At no point vertices contained in two blocks

in the common subgraph can be contained in only one block in the corresponding input

graph, because each block of G is only compared with exactly one block of H at each time.

Of course, during the algorithm the blocks are compared to multiple blocks but only the

maximum of those comparisons is taken into account. Therefore, restriction (BBP1) is

always met.

Second, it is easy to see that only blocks of the same type are compared during the

whole computation of the algorithm, see Lines 4 and 14 in Algorithm 5.1 and Lines 6 and

21 in Procedure 5.3. Thus, during the whole algorithm it is not possible that vertices which

are not contained in a bridge node in one of the input graphs are contained in a bridge

node in the common subgraph. Also as Procedure 5.2 computes a 2-connected common

subgraph for two non-bridge nodes, it is not possible that a vertex which is not contained in

a bridge node is contained in a bridge node in the common subgraph. Therefore restriction

(BBP2) cannot be violated due to the design of the algorithm.

As both restrictions are satis�ed at each point during the computation, the result of

the algorithm is a block-and-bridge preserving common subgraph of both input graphs.�

It must be noted that initially both types of blocks are considered. Therefore not only

non-bridge blocks are compared, but also bridges are compared and chosen as root for the

BC-trees. This is necessary since a simple path is also a partial 2-tree, and the BC-tree of

a simple path only consists of cutvertices and bridge nodes. Now it must be shown that

the common subgraph is also a maximum common subgraph of the input graphs. This

proof is straight forward, as simply all feasible combinations of nodes in the BC-trees are

compared.

Lemma 5.3.2. The block-and-bridge preserving common subgraph of two partial 2-trees

computed by Algorithm 5.1 is a maximum common subgraph.

Proof. In Chapter 4 it is proven, that Algorithm 4.1 computes the 2-connected maximum

common subgraph of two 2-connected partial 2-trees. Therefore the algorithm presented in

this chapter computes the block-and-bridge preserving maximum common subgraph of two

2-connected partial 2-trees per de�nition. As the graphs are not necessarily 2-connected1,

these cases must be considered, too.

If only one graph is not 2-connected, the common subgraph computed by the algorithm

is a maximum common subgraph, as sMCS-Cut (Procedure 5.3) always returns 0 and thus

1A connected partial 2-tree is either simply connected or 2-connected as a partial 2-tree cannot be

3-connected per de�nition.

60 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

the algorithm behaves exactly the same as in Chapter 4 and the bridges of the input graph

which is not 2-connected cannot be contained in the common subgraph.

If both graphs are not 2-connected, the algorithm computes a 2-connected maximum

common subgraph for each combination of non-bridge blocks. It has been proven before

that these are computed correct. Also during the combination, all 2-connected common

subgraphs are considered. These results can be stored and then be reused for Procedure

sMCS-Cut to compute the block-and-bridge preserving maximum common subgraph of

the subgraph given by the child nodes of the C-node under the restriction that the vertices

associated with the C-nodes are mapped accordingly. The size of a maximum common

subgraph of two bridges is trivial, as it is always two. As all feasible combinations of these

results are combined, the result must be a maximum common subgraph. It must be noted

that not only the maximum common subgraphs of two non-bridge blocks are compared

but all feasible common subgraphs. This is necessary as the size of a common subgraph

may be increased if two cutvertices are mapped. �

Last it has to be shown that Algorithm 5.1 computes the block-and-bridge preserving

maximum common subgraph of two partial 2-trees in polynomial time. This result is not

trivial as all block-and-bridge preserving common subgraphs of non-bridge blocks of both

input graphs need to be considered in the solution. Let n = max {V (G), V (H)} be the

maximum number of vertices in a graph of the instance and m = max {E(G), E(H)} be
the maximum number of edges in a graph of the instance.

Theorem 5.3.3. The block-and-bridge preserving maximum common subgraph problem in

partial 2-trees can be solved in time O
(
n6
)
.

Proof. In Theorem 4.3.22 it is proven, that the size of a 2-connected maximum common

subgraph of two 2-connected partial 2-trees can be computed in timeO
(
n6
)
. The algorithm

is transformed into a dynamic programming algorithm for the analysis. In the proof of the

theorem is has been shown, that tables of size O(n4) are su�cient to store the information

about the split graphs, furthermore they store the size of the maximum common subgraph

of two split graphs.

Once again it is assumed without loss of generality that for each smaller block split

graph the block-and-bridge preserving maximum common subgraph has been computed

whenever BBP-MCS-Series is called. These results can be used in time O(1). The new

part of the algorithm is the call of BBP-MCS-Cut. To calculate the value of BBP-

MCS-Cut, maximum weighted matching in a bipartite graph can be used. This problem

is solvable in O(n3) by the Hungarian method [21]. The bipartite graph and the weights

for the edges are described in Equations 5.1 to 5.4. Due to the construction of BC-trees,

the child-parent relation is given by the fact that all bride and non-bridge nodes containing

2See also [20].

5.4. SUMMARY 61

the cutvertices (except for those associated with the current table) are children of those.

Since the tables have size O(n4) and the loop in Line 15 requires time O(n2), the running

time of Procedure BBP-MCS-Series is O(n6).

BBP-MCS-Cut can be computed in time O(n5) since the size of a block-and-bridge

preserving maximum common subgraph of the smaller block split graphs has already been

computed and can therefore be used. Again the maximum bipartite matching problem can

be solved in O(n3) since at most O(n2) of these matching problems must be solved during

the algorithm, the total running time of Procedure BBP-MCS-Cut is O(n5).

As Procedure BBP-MCS-MatchEdges has not been changed, the total running time

of the algorithm is O(n5). Therefore, the running time of the algorithm is dominated by

the running time of Procedure BBP-MCS-Series resulting in a total running time of

O(n6). �

The algorithm presented in Chapter 4 computes a 2-connected maximum common

subgraph of two partial 2-trees in O
(
n4
)
if both graphs are outerplanar. Although the

computation of the 2-connected maximum common subgraphs of each combination of non-

bridge blocks is the dominating factor regarding the running time, the consideration of all

combinations of B-nodes whenever two cutvertices are mapped becomes the dominating

factor if both graphs are outherplanar.

Theorem 5.3.4. The block-and-bridge preserving maximum common subgraph problem for

outherplanar graphs can be solved in O
(
n5
)
.

Proof. The proof is similar to the proof of Theorem 4.3.4. Since the P -nodes in SP-trees

of outerplanar graphs have degree two, the running time of the Procedures BBP-MCS-

Series and BBP-MCS-MatchEdges is reduced to O(n4) and O(n3), respectively. There

is no need to use the maximum bipartite matching, because the bipartite graphs are K2's

and there is only one S-node to continue the algorithm. The result may not be 2-connected

but there still is only one S-node which can be considered.

Procedure BBP-MCS-Cut on the other hand considers all adjacent nodes in the BC-

tree. The number of adjacent nodes in the BC-tree is not restricted if the graph is outerpla-

nar and therefore still unbounded. Since this procedure has a total running time of O(n5),

this running time is the dominating time, if both graphs are outherplarnar. Therefore the

total running time of the algorithm if both input graphs are outerplanar is O(n5). �

5.4 Summary

In this chapter an algorithm which solves the block-and-bridge preserving maximum com-

mon subgraph problem for partial 2-trees problem is presented. It is shown, that the

algorithm solves the problem in polynomial time. Therefore, the algorithm presented

62 CHAPTER 5. THE BLOCK-AND-BRIDGE PRESERVING MCS

in chapter 4 which solves the 2-connected maximum common subgraph problem for 2-

connected partial 2-trees in polynomial time is extended. As, unlike 2-connected partial

2-trees, a partial 2-tree cannot be represented as a SP-tree decomposition, the BC-tree

decomposition is used. Containing SP-tree decompositions for each 2-connected subgraph,

the adjustments of the original algorithm are based on the changed data structure. Sum-

marized algorithm 5.1 computes the size for each combination of B-nodes using the original

algorithm to compute the size of the maximum common subgraph for the contained SP-

tree decomposition in the B-nodes. If vertices pertinent to C-nodes are mapped, the size

of the maximum common subgraph of the adjacent B-nodes may be added if appropriate.

In [26] an algorithm for the block-and-bridge preserving maximum common subgraph

problem for outerplanar graphs3 is presented which solves the problem in time O
(
n7
)
. The

discrepancy is a result of changes which are required to compute an arbitrary maximum

common subgraph of two outerplanar graphs in [4]. Nevertheless the algorithm presented

in this chapter computes a block-and-bridge preserving maximum common subgraph of

two outerplanar graphs in time O
(
n5
)
.

3In this paper, the edge induced maximum common subgraph problem is considered. The di�erence in

the problem may explain the di�erence in the running time.

Chapter 6

The Maximum Common Subgraph

Problem in Partial 2-Trees with a

Bounded Number of Chordless

Cycles

The maximum common subgraph problems tackled in the previous chapters have restricted

the common subgraph, either to be 2-connected or to be block-and-bridge preserving.

Since restricting the solutions may not be possible in some applications, in this chapter

an algorithm solving the maximum common subgraph problem in partial 2-trees with a

bounded number of chordless cycles in 2-connected components is presented. To do so,

�rst characteristics of cycles and their representation in BC-trees are presented, then the

concept of con�gurations is introduced. The BC-trees and the con�gurations are then used

to apply the approach, which is used to solve the block-and-bridge preserving maximum

common subgraph problem, to this problem.

Before solving the problem in partial 2-trees with a bounded number of chordless cycles

in 2-connected components the problem is solved in partial 2-trees with bounded number

of cycles in 2-connected components.

6.1 Con�gurations, Cycles and SP-trees

Let G = (V,E) be a graph. A con�guration is a set of vertices C ⊆ V such that there are no

adjacent vertices in the con�guration. The subgraph G′ ⊆ G is called subgraph of G with

respect to the con�guration C if G′ = G \C. Let G be a graph and R = (v1, v2, . . . , vn, v1)

a cycle in that graph. Then R has a chord if (vi, vj) ∈ E(G) for any i, j ∈ [n], such that

|i− j| 6= 1 or |i− j| 6= n− 2. If there is no such edge, then the cycle is called chordless.

63

64 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

(a) (b)

Figure 6.1: A chordless cycle (a) and a cycle containing a chord highlighted in red (b).

The idea presented in Section 6.2 to compute the size of a maximum common subgraph

in partial 2-trees with a bounded number of chordless cycles G and H is to compare all

subgraphs with respect to a con�guration of G to those of H. To do so, all feasible

con�gurations need to be considered. It is easy to see that the number of con�gurations is

2|V (G)| and 2|V (H)|, respectively. It must be noted, that not the number of chordless cycles

in the whole graph must be bounded but the number of chordless cycles in the maximal

2-connected components of a graph must be bounded.

i

j

k l

m

n

o

(a)

i

j

k l

n

(b)

Figure 6.2: A 2-connected graph (a) and the subgraph of the graph with respect to the con�gu-

ration {m, o} (b).

Con�gurations are used to compute all connected subgraphs of the input graphs. Since

the maximum common subgraph needs to be connected and all of these subgraphs are

considered, it is su�cient to compute the size of a block-and-bridge preserving maximum

common subgraph.

As the number of con�gurations is exponential, there cannot be a polynomial time al-

gorithm comparing all subgraphs with respect to the con�gurations. If the maximum com-

mon subgraph is not required to be connected, the problem isNP-complete[14]. Therefore,

there is no need to consider subgraphs with respect to a con�guration which are not con-

nected. Hence, it is not necessary to consider con�gurations which are a separator of the

graph.

6.1. CONFIGURATIONS, CYCLES AND SP-TREES 65

Lemma 6.1.1. Let G be a 2-connected partial 2-tree and T SP
G the SP-tree of G. Also let

n be the number of leaf S-nodes and closed P -nodes in the SP-tree, then a subgraph with

respect to a con�guration containing at least n vertices is not connected.

Proof. Let G be a 2-connected partial 2-tree and T SP
G the SP-tree of G. Also let V l

S ⊆
VS(T SP

G) be the leaf S-nodes of T SP
G , n = |V l

S | and C = {c1, c2, . . . , cm} with n ≤ m be a

con�guration. Assume that there is a subgraph G′ ⊆ G of G with respect to C which is

connected.

Therefore, for any two vertices u, v ∈ V (G) which are not in the con�guration, there is

a path u v in G′. Since there are at least n vertices contained in the con�guration, there

are two cases. Either at least one vertex in the skeleton graph of n S-node is contained

in the con�guration or second there is a S-node such that two vertices contained in the

skeleton graph of that S-node are contained in the con�guration.

In the �rst case, there are n vertices contained in the con�guration, each a vertex in a

di�erent S-node. First, assume that T SP
G does not contain any closed P -node. Assume that

G′ is still connected. Thus, for each pair of vertices u, v ∈ V (G′) there is a path u v.

Since each S-node represents a path between the vertices contained in the skeleton graph

of the P -node, the S-node is pertinent to, there are two cases. First, if all vertices are

contained in the leaf S-nodes, then there is a P -node λ such that there is no path between

the vertices in the skeleton graph of λ. In the second case, if there is a vertex contained

in the con�guration which is not in the skeleton graph of a leaf S-node, then the case is

analogously to the �rst one, since the vertex is contained in more than one path between

two vertices contained in a P -node, while each vertex in a leaf S-node is contained in at

least one path between any two vertices contained in the skeleton graph of a P -node.

If on the other hand, there are closed P -nodes in T SP
G , then there is always a path

between the vertices contained in the skeleton graphs of the closed P -nodes. Since there is

an additional vertex in the con�guration for each closed P -node, there must be at least one

P -node such that the skeleton graphs of each S-node, pertinent to that P -node, contains

a vertex which is also in the con�guration. If that P -node is an open P -node, then the

vertices in the skeleton graph of the P -node are not connected in G′. If that P -node is

closed, then there is a vertex w in G′ such that there is no path from w to the vertices in

the skeleton graph of the P -node. Therefore G′ cannot be connected.

In the second case, the subgraph G′ cannot be connected since there are two vertices

in the skeleton graph of one S-node. Since each S-node represents a path between the

vertices in the skeleton graph of the P -node it is pertinent to, there is at least one vertex

in the skeleton graph for which no path to none of the vertices in the skeleton graph of the

P -node exists. �

Regarding a 2-connected partial 2-tree and its SP-tree, the number of vertices in a con-

�gurations can be bounded by the number of leaf S-nodes of the SP-tree. Each additional

66 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

vertex in the con�guration would imply, that each subgraph with respect to the con�gu-

ration would be disconnected. In addition to the number of vertices which are su�cient in

a con�guration also the position of the vertices in the graph can be restricted.

Let G be a partial 2-tree, TBC,r
G the BC-tree decomposition rooted at r ∈ E(G) and

T SP
Λ the SP-tree of a non-bridge node Λ, rooted with respect to r1. A required con�guration

Creq
Λ := {s1, s2, . . . , sn} for a non-bridge node Λ consists of n vertices where n is the number

of S-nodes in T SP
Λ . Each si represents a S-node λi and can either be a vertex in the skeleton

graph of λi or ∅ for all i ∈ [n]. For each P -node λj and the adjacent S-nodes λj1 , . . . , λjs ,

there must be at least one sk with sk = ∅ for k = ji, . . . , js, except the vertex represented

by all the vertices is contained in the skeleton graph of a P -node.

Therefore, for a non-bridge node Λ a required con�guration Creq = {s1, s2, . . . , sn}
needs to satisfy the following conditions:

(RC1) |Creq | = |VS(T SP
Λ)|, where T SP

Λ is the SP-tree of Λ,

(RC2) let λ1, λ2, . . . , λn be the S-nodes of T SP
Λ , then si ∈ skel(λi) ∪ {∅} for all i ∈ [n],

(RC3) let λ′ be a P -node, then the value for at least one adjacent S-node must be ∅,
except the values are all a vertex in the skeleton graph of that P -node.

It must be noted that a vertex which is contained in the skeleton graph of a P -node

appears in more than one entry of the required con�guration. Hence a required con�g-

uration is a multi-set. These conditions are true for non-bridge nodes of a BC-tree. A

con�guration for the whole graph is the union of a con�guration for each non-bridge node.

Let G be a graph. Each subgraph G′ ⊆ G of G with respect to a con�guration C is called a

subgraph of G with respect to a required con�guration C if the con�guration C is a required

con�guration.

Lemma 6.1.2. Let G be a 2-connected partial 2-tree, then each subgraph of G′ ⊆ G with

respect to a required con�guration is connected.

Proof. Assume that there is a subgraph with respect to a required con�guration which is

not connected since there is at most one vertex for each S-node which is also contained

in the skeleton graph of that S-node in the con�guration, (RC1), (RC2) and also there is

no P -node for which all adjacent S-nodes have a vertex in their skeleton graph contained

in the con�guration, (RC3). Therefore, for each pair of vertices u, v in the subgraph G′,

there is a path u v since each S-node represents a path between the vertices contained

in the skeleton graph of the pertinent P -node. At least one of these vertices is contained

in G′ for each P -node per de�nition.

If there is only one vertex w contained in the skeleton graph of a P -node which is

contained in V (G′), then no other vertex contained in the skeleton graph of an adjacent

1For more informations regarding the rooting of Λ see Chapter 5.

6.1. CONFIGURATIONS, CYCLES AND SP-TREES 67

S-node is contained in the con�guration. Thus, for all vertices in the skeleton graphs of

these S-nodes there is a path to w.

If both vertices w,w′ contained in the skeleton graph of a P -node are contained in

V (G′), then there is at least one S-node adjacent to the P -node such that no vertex

contained in the skeleton graph of that S-node is contained in the con�guration. Therefore,

there is a path w w′ in G′ and also each vertex in the skeleton graphs of the S-nodes

adjacent to the P -node must have a path to w or w′.

These two cases are true for all P -nodes so that G′ must be connected. �

Because of that, required con�gurations do not result in disconnected graphs if the

graph is 2-connected. If the graph is 2-connected, then a subgraph with respect to a

required con�guration can be disconnected but if the subgraph is disconnected, then the

con�guration must contain a cutvertex.

Lemma 6.1.3. Let G be a partial 2-tree, then each subgraph of G′ ⊆ G with respect to

a required con�guration is connected if and only if the con�guration does not contain any

cutvertex.

Proof. In Lemma 6.1.2 it has been proven, that the vertices in 2-connected components in

G are contained in a connected component in G′, so a subgraph with respect to a required

con�guration cannot disconnect at a 2-connected component and if there is no cutvertex

contained in the con�guration, the subgraph must be connected. Since the removal of a

cutvertex results in a decomposition of the graph due to the de�nition of a cutvertex, a

subgraph with respect to a required con�guration cannot be connected if a cutvertex is

contained in the con�guration. �

Hence cutvertices contained in a required con�guration result in subgraphs which are

not connected. Although only connected subgraphs need to be considered, it is not pos-

sible to exclude cutvertices from the con�gurations since it is possible that two or more

cutvertices are adjacent and one is not contained in a maximum common subgraph.

The required con�gurations are later used in the algorithm to compute feasible sub-

graphs which then are compared if they are common subgraphs. To do so in a polynomial

time algorithm, the number of these con�gurations must be bounded polynomial by the

size of the the input graphs.

Lemma 6.1.4. Let G be a partial 2-tree and TBC
G the BC-tree decomposition, Λ ∈ VBl(TBC

G)

a non-bridge node in the BC-tree and T SP
Λ the SP-tree of that node. Then the number of

cycles in the skeleton graph SΛ is
∑n−1

i=1 i = n(n−1)
2 where n is the number of leaf S-nodes

and closed P -nodes in T SP
Λ .

Proof. Proof by induction regarding the number n of leaf nodes in a SP-tree. It is easy to

see that for the base case n = 2 there is exactly one cycle and for n = 3 there are three

68 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

cycles. The induction step: A graph which has a SP-tree containing n + 1 leaf S-nodes

contains n(n+1)
2 cycles under the assumption that a graph which has a SP-tree containing n

leaf S-nodes contains n(n−1)
2 cycles. The additional S-node is an additional path between

two vertices. This path can be contained in any existing cycle containing these vertices.

The number of cycles containing these vertices is n−1. Since there are already n(n−1)
2 cycles

this results in additional n cycles because the new path also results in a cycle containing

the new path and the shortest path between the vertices.

The same induction can be done for closed P -nodes since each closed P -node represents

a path between two vertices and a graph which has a SP-tree consisting of a closed P -node

and two S-nodes has three cycles. �

Therefore by bounding the number of cycles in the graph, the number of S-nodes and

closed P -nodes is bounded which bounds the number of required con�gurations.

Lemma 6.1.5. Let n be the number of chordless cycles in a 2-connected partial 2-tree and

m the number of S-nodes in the tree, then n ≥ m.

Proof. Let G be a 2-connected partial 2-tree and T SP the SP-tree of G. If each P -node

in T SP is closed and G is outerplanar, then the number of chordless cycles is equal to the

number of S-nodes in the SP-tree, since each chordless cycle can only consist of the vertices

in the skeleton graph of one S-node and a P -node. Each cycle containing vertices, which

are in more than one S-node and a P -node, contains at least one chord which is the edge

incident to the vertices in the skeleton graph of the P -node.

In Lemma 6.1.4 the relation between S-nodes and the number of cycles is explained. So

in both cases the addition of each S-node results in at least one new cycle. Therefore the

number of chordless cycles is always greater than the number of S-nodes in the SP-tree.�

Therefore, by bounding the number of chordless cycles in the partial 2-tree, the number

of S-nodes in the SP-trees is restricted. Since the number of required con�gurations is

bounded exponentially by the number of S-nodes, this results in a restriction of the required

con�gurations. Since a con�guration applies to a 2-connected partial 2-tree, a partial 2-tree

has a con�guration for each non-bridge block. Since these con�gurations are independent

during the computation, this does not result in an exponential number of subgraphs with

respect to a con�guration.

6.2 An Algorithm for the Maximum Common Subgraph Prob-

lem in Partial 2-Trees with a Bounded Number of Chord-

less Cycles

The main idea of the algorithm for two input graphs G and H is to compute the size of

a maximum common subgraph of two subgraphs G′ ⊆ G and H ′ ⊆ H with respect to

6.2. THE ALGORITHM � BOUNDED NUMBER OF CHORDLESS CYCLES 69

required con�gurations C and C ′, respectively. By restricting the considered graph to a

subgraph respecting a required con�guration the algorithm used to compute the block-and-

bridge preserving maximum common subgraph presented in Chapter 5 can be adjusted and

reused. To do so, it is important that the number of required con�gurations is bounded

polynomial regarding the size of the input graphs. Since the number of con�gurations

is bounded by the number of chordless cycles in the non-bridge nodes of the BC-tree

and this number is restricted, the con�gurations can be computed in polynomial time.

ReqConfigurations returns all required con�gurations for a non-bridge node.

Since the algorithm needs to respect the required con�gurations, vertices in the input

graphs are deleted when they are contained in a con�guration, and then added again if

another con�guration is considered. To do so, it is important to notice, that the used data

structures namely BC-trees and SP-trees can both be updated in linear time, see [27] and

[17], respectively.

Algorithm 6.1 still compares all non-bridge nodes and all bridge nodes separately. There

is no need to use con�gurations in bridge nodes, since each vertex in a bridge is a cutvertex

and there is no need to forbid these when the algorithm starts the construction of a common

subgraph in a bridge node. The vertices in the skeleton graphs of the bridge nodes are

either also contained in a non-bridge node where a con�guration can be applied to them

or are only contained in bridge nodes, where they can be ignored by not including them in

a common subgraph.

With respect to the algorithm computing the size of a block-and-bridge preserving

maximum common subgraph, Algorithm 6.1 is extended to work with con�gurations. The

algorithm still starts at a node in the BC-tree and applies all required con�gurations for

that node on the BC-tree. Update updates the BC-tree with respect to the con�guration,

therefore it hides the vertices contained in the con�guration. If update is called again for

a node which already has a con�guration applied to it, the new con�guration is used. So

applying an empty con�guration to all nodes in the BC-tree restores the BC-tree. Since

only one con�guration should be applied to a non-bridge node, all cutvertices in the BC-

tree of G and H, respectively, are marked as original in Line 3. This label is later used to

determine, whether a con�guration must be applied to a non-bride node in the updated

BC-tree, since during the computation all non-bride nodes are either considered directly

in Algorithm 6.1 or during Procedure 6.4 when a cutvertex has been mapped. Since a

con�guration can result in new cutvertices and the no con�guration should be applied to

the non-bridge nodes adjacent to those, the label original is used.

6.2.1 Computation of MCS-BCC-Series andMCS-BCC-MatchEdges

Procedure 6.2 is not changed in its function regarding the computation of a block-and-

bridge preserving maximum common subgraph since the idea of the algorithm is to compare

70 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

Algorithm 6.1 MCS-BCC(G,H)

Input: Two partial 2-trees G and H.

Output: Size of a maximum common subgraph of the partial 2-trees G and H.

1: TBC
G ← BC(G)

2: TBC
H ← BC(H)

3: mark all vertices associated with a cutvertex as original

4: mcs ← 0

5: for all (Ξ,Ξ′) ∈ VBl(TBC
G)× VBl(TBC

H) do

6: for all (C,C ′) ∈ ReqConfigurations(Ξ)×ReqConfigurations(Ξ′) do
7: Update(TBC

G ,Ξ, C); Update(TBC
H ,Ξ′, C ′)

8: for all (Λ,Λ′) ∈ VBl(TBC
G)× VBl(TBC

H) do

9: T SP
Λ ← SP(SBCΛ)

10: T SP
Λ′ ← SP(SBCΛ′)

11: for all (λ, λ′) ∈ VS(T SP
Λ)× VS(T SP

Λ′) do

12: r ← arbitrary edge (u, v) ∈ E(Sλ) ∩ E(G)

13: root TBC
G at r

14: for all edges r′ = (u′, v′) ∈ E(Sλ′) ∩ E(H) do

15: root TBC
H at r′

16: p1 ← sMCS-Series(u, v, λ, u′, v′, λ′) + sMCS-Cut(u, u′)

17: p2 ← sMCS-Series(u, v, λ, v′, u′λ′) + sMCS-Cut(u, u′)

18: mcs ← max {mcs, p1, p2}

19: for all (Λ,Λ′) ∈ VBr(TBC
G)× VBr(TBC

H) do

20: r = (u, v)← E(SBCΛ); root TBC
G at r

21: r′ = (u′, v′)← E(SBCΛ′); root TBC
H at r′

22: p1 ← sMCS-Cut(u, u′) + sMCS-Cut(v, v′)

23: p2 ← sMCS-Cut(u, v′) + sMCS-Cut(v, u′)

24: mcs ← max {mcs, p1, p2}

25: return mcs +2

all subgraphs with respect to a required con�guration and computing a block-and-bridge

preserving maximum common subgraph of these subgraphs. The procedure is only listed

to give a full overview of the algorithm. The same is true for Procedure 6.3 which is also

only listed to give a full overview of Algorithm 6.1.

6.2.2 Computation of MCS-BCC-Cut

Procedure 6.4 is extended to work with con�gurations. To do so, �rst it has to be deter-

mined whether the cutvertices u and u′ are original. In Lines 6 and 9 the con�gurations

for the adjacent child non-bridge nodes are computed only if the associated cutvertex is

6.2. THE ALGORITHM � BOUNDED NUMBER OF CHORDLESS CYCLES 71

Procedure 6.2 MCS-BCC-Series(u, v, λ, u′, v′λ′)

Input: Base vertices u, v of G and u′, v′ of H and S-nodes λ ∈ S(TG) resp. λ′ ∈ S(TH).

Output: Size of a maximum common subgraph of the split graphs Gruv and Hr
u′v′ under

the condition that u is mapped to u′.

1: e = (v, w)← Next(v, λ)

2: e′ = (v′, w′)← Next(v′, λ′)

3: mcs← 0

4: if e = ref(λ) then return MSC-Series(u, v, pS(λ), u′, v′, λ′)

5: if e′ = ref(λ′) then return MSC-Series(u, v, λ, u′, v′, pS(λ′))

6: if w = u and w′ = u′ then return MatchEdge(e, λ, e′, λ′)

7: if w = u xor w′ = u′ then

8: return −∞
9: mcs ←MatchEdge(e, e′) + sMCS-Series(u,w, λ, u′, w′, λ′) + 1

+ sMCS-Cut(w,w′)

10: if e /∈ E(G) or e′ /∈ E(H) then

11: if e ∈ E(G) then M ← {λ}
12: else M ← sC(e)

13: if e′ ∈ E(H) then M ′ ← {λ′}
14: else M ′ ← sC(e′)

15: for all (η, η′) ∈M ×M ′ do
16: p←MCS-Series(u,w, η, u′, w′, η′) + sMCS-Cut(w,w′)

17: mcs← max {mcs, p}

18: return mcs

an original cutvertex. Otherwise there is only the empty con�guration not changing the

current BC-tree. Then starting in Line 12 all non-bridge nodes are compared.

If at least one of the cutvertices is an original cutvertex, the required con�gurations are

applied to the BC-tree. Otherwise only the non-bridge node is considered. Then in Line

15 all adjacent child B-nodes are considered again. This is necessary since a con�guration

has been applied before and therefore the block split graphs TBC,r
u and TBC,r

u′ may have

been changed. The rest of the procedure is the same as Procedure 5.3 since at this point,

all adjacent child B-nodes must be compared. It must be noticed, that in Lines 24 and

25 only edges incident to the cutvertex are considered. This is necessary since not the

maximum common subgraph of the split graphs TBC,r
u and TBC,r

u′ must be returned by the

procedure, but the maximum common subgraph in which u is mapped to u′.

72 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

Procedure 6.3 MCS-BCC-MatchEdges(e, λ, e′, λ′)

Input: Edges e = (u, v) ∈ E(Sλ) and e′ = (u′, v′) ∈ E(S′λ)

Output: Size of a maximum common subgraph of the split graphs Gruv and Hr
u′v′ under

the condition that u is mapped to u′.

1: if e ∈ E(G) xor e′ ∈ E(H) then return −∞

2: if e or e′ is a real edge in Sλ resp. Sλ′ then return 0

3: M ← cS(e)

4: M ′ ← cS(e′)

5: for all f = (η, η′) ∈M ×M do

6: w(f)←MCS-Series(u, v, η, u′, v′η′)

7: p←MwbMatching(M,M ′, w)

8: if p = 0, e /∈ E(G) or e′ /∈ E(H) then return −∞

9: return p

6.3 Correctness and Running Time

Lemma 6.3.1. The result of Algorithm 6.1 is the size of a maximum common subgraph

of the input graphs.

Proof. The algorithm compares all subgraphs respecting required con�gurations and com-

putes a block-and-bridge preserving maximum common subgraph of these subgraphs. Since

the subgraphs with respect to a con�guration are connected partial 2-trees, it must be

proven that all connected subgraphs are considered. As each combination of vertices not

resulting in a disconnected graph is used as required con�guration, all those graphs are

considered and therefore the algorithm computes the size of the maximum common sub-

graph. �

The algorithm computes the size of a maximum common subgraph of two partial 2-trees

with a bounded number of chordless cycles. Now it has to be shown that the algorithm

computes the size in polynomial time regarding the size of the input graphs. It is not

easy to see that the algorithm computes the size of the maximum common subgraph in

polynomial time since all connected subgraphs of the input graphs are considered. Since

the number of required con�gurations is bounded for each non-bridge node of the BC-

tree, it is possible to transform the algorithm in a dynamic programming algorithm and

reuse the computed solutions for smaller block split graphs. Due to this, the number of

con�gurations for each non-bridge node can be bounded by the number of chordless cycles

in that node.

Let n = max {|V (G)|, |V (H)|} and k be the maximum number of chordless cycles in a

2-connected component of either G or H.

6.4. SUMMARY 73

Theorem 6.3.2. The maximum common subgraph problem in partial 2-trees with a bounded

number of chordless cycles can be solved in time O(n6+2k).

Proof. The algorithm computes the size of block-and-bridge preserving maximum common

subgraphs for subgraphs respecting a required con�guration. To do so, the size is computed

for all required con�gurations. Therefore, the total running time of the algorithm is the

running time of the algorithms solving the block-and-bridge preserving maximum common

subgraph problem times the number of required con�gurations.

The number of required con�gurations for a non-bridge node is bounded by O(nk). It is

assumed that the common subgraphs for each smaller block split graph have already been

computed and can therefore be used in this computation. Since for each con�guration the

BC-tree is adjusted, which can be done in linear time and also the SP-tree is adjusted, which

can be done in linear time, too, the algorithm computes a block-and-bridge preserving

maximum common subgraph for the subgraphs with respect to the required con�guration.

This can be done in O(n6). Due to the fact, that the results for smaller block split graphs

have already been computed, the required con�gurations for non-bridge nodes in these

split graphs do not have to be considered during this computation. Therefore, the total

running time of the algorithm is O(n6+2k). �

6.4 Summary

In this section an algorithm solving the maximum common subgraph problem in partial

2-trees is presented. The algorithm uses the concept of con�gurations which are sets of ver-

tices which cannot appear in a common subgraph with respect to that con�guration. Since

the number of con�guration is exponential by the size of the graph, required con�gurations

are introduced. It is shown that the number of required con�gurations is bounded poly-

nomial by the size of the graph if the number of chordless cycles in the graph is bounded.

Hence, the algorithm computes the size of a maximum common subgraph in polynomial

time if the number of chordless cycles is bounded.

These required con�gurations are then used together with the approach used in Chapter

5 to solve the problem, since a common subgraph of two subgraphs respecting required

con�gurations is block-and-bridge preserving for these graphs. The common subgraph may

not be block-and-bridge preserving with respect to the input graphs.

Since the running time of the algorithm is O(n6+2k), is does not compute the maximum

common subgraph of two outerplanar graphs in polynomial time as the number of chordless

cycles in outerplanar graphs is bounded by the size of the graph.

74 CHAPTER 6. BOUNDED NUMBER OF CHORDLESS CYCLES

Procedure 6.4 MCS-BCC-Cut(u, u′)

Input: Two cutvertices u ∈ V (G), u′ ∈ V (H).

Output: Size of a preserving maximum common subgraph of the block split graphs TBC,r
G,u

and TBC,r
H,u′ under the condition that u is mapped to u′.

1: if u or v is not pertinent to a node C-node then

2: return 0

3: N ← cB(u); N ′ ← cB(u′)

4: Crequ ← {∅}; Crequ′ ← {∅}
5: mcs ← 0

6: if u is an original cutvertex then

7: for all Ξ ∈ VBl(N) do

8: Crequ ← Crequ ∪ReqConfigurations(Ξ)

9: if u′ is an original cutvertex then

10: for all Ξ′ ∈ VBl(N
′) do

11: Crequ′ ← Crequ′ ∪ReqConfigurations(Ξ′)

12: for all (Ξ,Ξ′) ∈ VBl(N)× VBl(N) do

13: for all (C,C ′) ∈ Crequ × Crequ′ do

14: Update(TBC
G , C); Update(TBC

H , C ′)

15: M ← cB(u); M ′ ← cB(u′)

16: for all f = (Λ,Λ′) ∈ VBl(M)× VBl(M) do

17: T SP
Λ ← SP(SBCΛ); T SP

Λ′ ← SP(SBCΛ′)

18: if ∃λ ∈ VP (T SP
Λ) such that u ∈ V (Sλ) then N ← cSP(λ)

19: else N ← {λ}

20: if ∃λ′ ∈ VP (T SP
Λ′) such that u′ ∈ V (Sλ′) then N

′ ← cSP(λ′)

21: else N ′ ← {λ′}

22: mcstmp ← 0

23: for all (λ, λ′) ∈ N ×N ′ do
24: (u, v)← arbitrary edge in E(Sλ) ∩ E(G)

25: for all edges (u′, v′) ∈ E(Sλ′) ∩ E(H) do

26: mcstmp ← max {mcstmp, sMCS-Series(u, v, λ, u′, v′, λ′)}

27: w(f)← mcstmp

28: for all f = (η, η′) ∈ VBr(M)× VBr(M) do

29: (u, v)← Next(u, λ)

30: (u′, v′)← Next(u′, λ′)

31: w(f)← sMCS-Cut(v, v′) + 1

32: mcs ← max {mcs,MwbMatching(M,M ′, w)}

33: return mcs

Chapter 7

Conclusion and Outlook

In this thesis the maximum common subgraph problem in partial 2-trees has been con-

sidered. The problem is known to be NP-hard if there are no restrictions regarding the

input graphs or the maximum common subgraph. Hence, di�erent restrictions have been

considered to analyze the complexity.

First in Chapter 3 it is shown that the maximum common subgraph problem in partial

2-trees is NP-hard, even if all vertices except for one in each of the input graphs have

bounded degree and the degree is bounded by three. This is done by proving that there

is a polynomial-time reduction from the maximum common subgraph problem in partial

2-trees to the numerical matching with target sums problem. Therefore the maximum

common subgraph problem in partial 2-trees with bounded degree of three for all but one

vertex is NP-hard1.

Then in Chapter 4 an approach for the 2-connected maximum common subgraph prob-

lem in 2-connected partial 2-trees is discussed. The algorithm has �rst been introduced

in [20] and is also explained in this thesis. The algorithm uses the characteristic of 2-

connected graphs that each vertex in such a graph must be contained in at least one cycle.

The algorithm also uses SP-trees as unique data structure to represent 2-connected par-

tial 2-trees. All this results in an algorithm solving the 2-connected maximum common

subgraph problem in 2-connected partial 2-trees in O(n6).

In Chapter 5 the block-and-bridge preserving maximum common subgraph problem in

partial 2-trees is introduced. Unlike the 2-connected maximum common subgraph problem,

this problem does not restrict the input graphs. BC-trees are used as unique data structure

in addition to the graphs. The algorithm solving the block-and-bridge preserving maximum

common subgraph problem uses the same characteristic as the algorithm before. Each

vertex contained in a non-bridge block in an input graph must be contained in a non-

bridge node in a common subgraph and therefore must be contained in at least one cycle.

This problem can be solved in O(n6).

1The decision version of the problem is NP-complete.

75

76 CHAPTER 7. CONCLUSION AND OUTLOOK

The block-and-bridge preserving maximum common subgraph problem2 in outerplanar

graphs is already discussed in [26], where an algorithm solving the problem in O(n7) is

developed. The algorithm presented in Chapter 5 can solve the block-and-bridge preserving

maximum common subgraph problem in outerplanar graphs in O(n5).

The problems discussed before have restricted the common subgraph �rst to be 2-

connected and then to be block-and-bridge preserving. In Chapter 6 the maximum common

subgraph problem in partial 2-trees with a bounded number of chordless cycles is discussed.

In this chapter, the concept of con�gurations and subgraphs respecting these con�gurations

is introduced. It is shown that the number of con�gurations which need to be considered

is bounded by the number of chordless cycles. Also it is shown that the approach of the

previous chapter can be reused to solve the problem in O(n6+2k), where k is the maximum

number of chordless cycles in a block.

In this thesis the maximum common subgraph problem in partial 2-trees has been

tackled with di�erent restrictions. It has been proven, that there are e�cient algorithms

for various restrictions. It has also been shown that some restrictions are not su�cient to

obtain an e�cient algorithm unless P = NP.

Even though the maximum common subgraph problem in partial 2-trees has not been

fully solved. An interesting open question is whether the maximum common subgraph

problem in partial 2-trees is solvable in polynomial time if all vertices in both input graphs

have bounded degree. During the creation of this thesis, this problem has been tackled

but still there is no clear result.

On the one hand, to the best knowledge of the author, there is only one problem which

is solvable in polynomial time in outerplanar graphs, but isNP-complete in partial 2-trees.

The problem is called the edge-disjoint paths problem, see [24], and asks whether there are

n pairwise edge-disjoint paths pi connecting 2n given vertices si and ti for all i ∈ [n].

On the other hand the maximum common subgraph problem in partial 2-trees of

bounded degree seems to be too simple for a polynomial-time reduction from any NP-

complete problem, since it is not possible to pairwise compare an unbounded number of

elements with just two graphs if the degree of the graphs is bounded. Also the considered

problem must either be NP-complete in the strong sense or must have an input which

is not a number. Therefore the number of possible candidates which can be used in a

reduction is even smaller.

Also the maximum common subgraph problem in other graph classes is still not ana-

lyzed. It is known that the maximum common subgraph problem in outerplanar graphs

can be solved in polynomial time, see [4]. In this thesis some restrictions of partial 2-trees

have been considered. It is also known, that the problem is NP-complete in partial 11-

trees with degree greater than �ve, see [3]. It may be interesting to decide whether the

maximum common subgraph problem isNP-complete in partial 3-trees of bounded degree.

2The edge induced maximum common subgraph problem.

Variables, Functions and

Abbreviations

G = (V,E) : Graphs

V, V (G) : Set of vertices, Set of vertices of G

E,E(G) : Set of edges, Set of edges of G

deg(v) : Degree of v

λG : Graph labeling of G

G[W] : Subgraph induced by W in G

u v : Path between u and v

MwbMatching : Maximum weighted bipartite matching

Kn : Complete graph with n vertices

Kn.m : Complete bipartite graph with bipartitions

containing n and m vertices

G ∼= H : G is isomorphic to H

H 4 G : H is subgraph isomorphic to G

TD(G) : Tree decomposition of a graph G

C(G) : The connected components of G

Xi : Bag in tree decomposition

tw(G) : Tree width of the graph G

NTD(G) : Normalized tree decomposition of a graph G

Ks,t
2 : K2 where one vertex is denoted by s and the other by t

SPQR(G) : SPQR-tree of the graph G

SP(G) : SP-tree of G

Sλ : Skeleton graph of the node λ in a SP-tree

VS(T) : Set of S-nodes of a SP-tree T

VP (T) : Set of P -nodes of a SP-tree T

77

78 CHAPTER 7. CONCLUSION AND OUTLOOK

ref(λ) : Reference of λ

BC(G) : Block graph of G which is a BC-tree if G is a partial 2-tree

(X,Y, s,~b) : Instance of the numerical matching with target sums problem

GX,Ys : Graph representing the values of the elements in X and Y

of an instance of the numerical matching with target sums problem

HX,Y

s,~b
: Graph representing the values in ~b

of an instance of the numerical matching with target sums problem

Σs :
n∑
i=1

(s(xi) + s(yi)) for an instance (X,Y, s,~b)

Σ~b :
n∑
i=1

bi for an instance (X,Y, s,~b)

[n] : {1, . . . , n}

Gruv : Split graph rooted at r, split at u, v containing the root

Gruv : Split graph rooted at r, split at u, v not containing the root

TBC,r
u : Block split graph rooted at r, split at u containing the root

TBC,r
u : Block split graph rooted at r, split at u not containing the root

Creq : Required con�gurations

List of Figures

2.1 A 2-connected and a connected undirected graph. 4

2.2 A bipartite graph. All vertices in a bipartition are either blue or red. 4

2.3 An outerplanar graph with inner faces f1, f2 and the outer face fo. 5

2.4 A graph, subgraph and common subgraph isomorphism. 6

2.5 Example of an edge induced maximum common subgraph. 6

2.6 Example of a tree decomposition. 7

2.7 Normalized tree decomposition. 9

2.8 Example of a block graph. 10

2.9 Construction of a series-parallel graph. 11

2.10 Example of the skeleton graphs of S-, P -, Q- and R-node 12

2.11 Transformation from a normalized tree decomposition to the SP-tree. 14

2.12 Extended BC-tree . 15

2.13 Relation of P and NP . 17

3.1 Base gadget of GX,Ys . 22

3.2 Graph GX,Ys . 23

3.3 Construction of GX,Ys with S- and P -operations. 27

3.4 Base gadget of HX,Y

s,~b
. 28

3.5 Graph HX,Y

s,~b
. 29

3.6 Mapping of vertices not in the base gadgets in GX,Ys and HX,Y

s,~b
. 31

3.7 Base gadget if degree is bounded for all vertices. 34

4.1 Example of the importance to consider both possible mappings of base vertices. 40

5.1 Feasible and not feasible block-and-bridge preserving common subgraphs. . 49

5.2 Characteristics of common subgraphs. 49

5.3 Example of the naming of the BC-trees. 50

5.4 Split and block split graphs and an example of the rooting of a SP-tree. . . 52

6.1 Example of a chordless cycle and a cycle containing a chord. 64

6.2 Example of a con�guration . 64

79

80 LIST OF FIGURES

List of Algorithms

4.1 2-MCS(G,H) . 40

4.2 2-MCS-Series(u, v, λ, u′, v′, λ′) . 42

4.3 2-MCS-Edges(e, λ, e′, λ′) . 44

5.1 BPP-MCS(G,H) . 54

5.2 BBP-MCS-Series(u, v, λ, u′, v′λ′) . 55

5.3 BBP-MCS-Cut(u, u′) . 57

5.4 BBP-MCS-Edges(e, λ, e′, λ′) . 58

6.1 MCS-BCC(G,H) . 70

6.2 MCS-BCC-Series(u, v, λ, u′, v′λ′) . 71

6.3 MCS-BCC-MatchEdges(e, λ, e′, λ′) . 72

6.4 MCS-BCC-Cut(u, u′) . 74

81

82 LIST OF ALGORITHMS

Index

(u, v)-separator, 36

adjacent, 3

allocation nodes, 38

B-node, 9

bag, 7

base vertex, 38

bipartite, 4

bipartition, 4

block, 8

block graph, 9

block split graph, 51

block-and-bridge preserving, 47

bridge, 9

C-node, 9

chord, 63

chordless, 63

clique nodes, 8

closed, 12

common subgraph isomorphism, 5

complete bipartite graph, 5

complete graph, 5

component, 3

compulsive, 36

con�guration, 63

connected, 3

critical, 36

cross, 37

cutvertex, 4

cycle, 4

cylce, 63

deg(v), 3

degree, 3

deterministic, 16

directed, 3

edge, 3

edge induced common subgraph, 5

edge induced maximum common subgraph,

6

�xed parameter tractable, 17

forest, 4

graph, 3

graph labeling, 3

incident, 3

induced subgraph, 4

instance, 16

isomorphic, 5

k-connected, 3

k-connected component, 4

k-separator, 36

Kn, 5, 6, 10

Kn,m, 5, 6

labeled graph, 3

leaf, 4

loop, 4

matching, 4

maximum bipartite matching problem, 39

maximum common subgraph isomorphism,

5, 19

maximum common subgraph problem, 19

maximum independent set problem, 7

83

84 INDEX

maximum weighted bipartite matching prob-

lem, 4

maximum weighted matching problem, 4

MwbMatching, 5

non-bridge, 9

nondeterministic, 16

normalized tree decomposition, 8, 36

NP, 16

NP-complete, 16, 19, 33, 64

NP-complete in the strong sense, 17, 21

NP-hard, 16, 19, 33

open, 12

outerplanar, 5

P, 16

parallel, 37

parameter, 16

partial 2-tree, 10

path, 3

pertinent, 12

planar, 5

potential, 36

problem, 16

pseudo-polynomial time, 17

real edge, 12

reference, 14

required con�guration, 66

root, 38

rooted SP-tree, 14

separating path, 24

separator, 4, 8, 36, 64

separator nodes, 8

series-parallel graph, 10, 25

shear path, 38

shear split, 38

simple, 5

skeleton graph, 12

solution, 16

SP-tree, 12

split, 38

split graphs, 38

SPQR-tree, 11

subgraph, 5

subgraph isomorphic, 5

tree, 4

tree decomposition, 7

tree width, 7

undirected, 3

vertex, 3

virtual edge, 12

Bibliography

[1] Subtree isomorphism inO(n
5
2), author=Matula, David W, journal=Annals of Discrete

Mathematics, volume=2, pages=91�106, year=1978, publisher=Elsevier.

[2] Tatsuya Akutsu. A polynomial time algorithm for �nding a largest common subgraph

of almost trees of bounded degree. IEICE transactions on fundamentals of electronics,

communications and computer sciences, 76(9):1488�1493, 1993.

[3] Tatsuya Akutsu and Takeyuki Tamura. On the complexity of the maximum common

subgraph problem for partial k-trees of bounded degree. In Algorithms and Compu-

tation, pages 146�155. Springer, 2012.

[4] Tatsuya Akutsu and Takeyuki Tamura. A polynomial-time algorithm for comput-

ing the maximum common subgraph of outerplanar graphs of bounded degree. In

Mathematical Foundations of Computer Science 2012, pages 76�87. Springer, 2012.

[5] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of �nding

embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277�284,

1987.

[6] Hans L. Bodlaender. A tourist guide through treewidth. Technical report RUU-CS,

92, 1993.

[7] Hans L Bodlaender. A linear-time algorithm for �nding tree-decompositions of small

treewidth. SIAM Journal on computing, 25(6):1305�1317, 1996.

[8] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-

oretical Computer Science, 209(1�2):1 � 45, 1998.

[9] Horst Bunke and Kim Shearer. A graph distance metric based on the maximal common

subgraph. Pattern recognition letters, 19(3):255�259, 1998.

[10] Markus Chimani and Petr Hlin¥n�y. A tighter insertion-based approximation of the

crossing number. In Automata, Languages and Programming, pages 122�134. Springer,

2011.

85

86 BIBLIOGRAPHY

[11] Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing. In Foun-

dations of Computer Science, 1989., 30th Annual Symposium on, pages 436�441.

IEEE, 1989.

[12] Richard J Du�n. Topology of series-parallel networks. Journal of Mathematical

Analysis and Applications, 10(2):303�318, 1965.

[13] Michael R Garey and David S Johnson. �strong�np-completeness results: Motivation,

examples, and implications. Journal of the ACM (JACM), 25(3):499�508, 1978.

[14] Michael R Gary and David S Johnson. Computers and intractability: A guide to the

theory of np-completeness, 1979.

[15] Arvind Gupta and Naomi Nishimura. Sequential and parallel algorithms for embedding

problems on classes of partial k-trees. Springer, 1994.

[16] Arvind Gupta and Naomi Nishimura. The complexity of subgraph isomorphism for

classes of partial k-trees. Theoretical Computer Science, 164(1):287�298, 1996.

[17] Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-trees. In

Graph Drawing, pages 77�90. Springer, 2001.

[18] Tamás Horváth and Jan Ramon. E�cient frequent connected subgraph mining in

graphs of bounded tree-width. Theoretical Computer Science, 411(31-33):2784 � 2797,

2010.

[19] R Bruce King and Dennis H Rouvray. Graph theory and topology in chemistry: a

collection of papers presented at an international conference held at the University of

Georgia, Athens, Georgia, USA, 16-20 March 1987, volume 51. Elsevier Science Ltd,

1987.

[20] Nils Kriege and Petra Mutzel. Finding maximum common subgraphs in series-parallel

graphs (unpublished).

[21] Harold W Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83�97, 1955.

[22] Andrzej Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic

time. Theoretical Computer Science, 63(3):295�302, 1989.

[23] Takao Nishizeki and Norishige Chiba. Planar graphs: Theory and algorithms. Access

Online via Elsevier, 1988.

[24] Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem is np-

complete for series�parallel graphs. Discrete Applied Mathematics, 115(1):177�186,

2001.

BIBLIOGRAPHY 87

[25] John W Raymond and Peter Willett. Maximum common subgraph isomorphism algo-

rithms for the matching of chemical structures. Journal of computer-aided molecular

design, 16(7):521�533, 2002.

[26] Leander Schietgat, Jan Ramon, and Maurice Bruynooghe. A polynomial-time metric

for outerplanar graphs. In Workshop on Mining and Learing with Graphs. Citeseer,

2007.

[27] Robert Tarjan. Depth-�rst search and linear graph algorithms. SIAM journal on

computing, 1(2):146�160, 1972.

[28] Jotph A Wald and Charles J Colbourn. Steiner trees, partial 2�trees, and minimum

i� networks. Networks, 13(2):159�167, 1983.

[29] Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal

of Mathematics, 54(1):150�168, 1932.

[30] Atsuko Yamaguchi, Kiyoko F Aoki, and Hiroshi Mamitsuka. Finding the maximum

common subgraph of a partial k-tree and a graph with a polynomially bounded number

of spanning trees. Information processing letters, 92(2):57�63, 2004.

88 BIBLIOGRAPHY

Eidesstattliche Versicherung

______________________________ ____________________

Name, Vorname Matr.-Nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Bachelorarbeit/Masterarbeit* mit

dem Titel

__

__

__

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

__________________________ _______________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit

einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für

die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden

Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5

Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie z.B. die

Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

_____________________________ _________________________
Ort, Datum Unterschrift

	Introduction
	Preliminaries
	Graphs
	Graph decompositions
	Tree decompositions
	Normalized tree decompositions
	BC-trees

	Partial 2-trees
	SPQR-trees
	SP-trees
	Extended BC-trees

	Complexity

	The Maximum Common Subgraph Problem for Partial 2-trees
	The Complexity of the Decision Version of the Maximum Common Subgraph Problem and the Numerical Matching with Target Sums Problem
	The Graphs for a Polynomial-Time Reduction
	The Graph GX,Ys
	The Graph HX,Ys,
	Characteristic of a Maximum Common Subgraph of GX,Ys and HX,Ys,

	A Polynomial-Time Reduction from the Numerical Matching with Target Sums Problem to the Maximum Common Subgraph Problem

	The 2-connected Maximum Common Subgraph Problem in 2-connected Partial 2-Trees
	Ideas of the Algorithm
	Separators
	Split Graphs
	The Methods MwbMatching and Next

	An Algorithm for the 2-connected Maximum Common Subgraph Problem in 2-connected Partial 2-Trees
	Computation of 2-MCS-Series
	Computation of 2-MCS-MatchEdges

	Analysis of the Algorithm
	Summary

	The Block-and-Bridge Preserving Maximum Common Subgraph Problem in Partial 2-Trees
	Characteristics of a Block-and-Bridge Preserving Maximum Common Subgraph
	An Algorithm for the Block-and-Bridge Preserving Maximum Common Subgraph Problem in Partial 2-Trees
	Computation of BBP-MCS-Series
	Computation of PPB-MCS-Cut
	Computation of BBP-MCS-Edges

	Correctness and Running Time
	Summary

	The Maximum Common Subgraph Problem in Partial 2-Trees with a Bounded Number of Chordless Cycles
	Configurations, Cycles and SP-trees
	An Algorithm for the Maximum Common Subgraph Problem in Partial 2-Trees with a Bounded Number of Chordless Cycles
	Computation of MCS-BCC-Series and MCS-BCC-MatchEdges
	Computation of MCS-BCC-Cut

	Correctness and Running Time
	Summary

	Conclusion and Outlook
	Variables, Functions and Abbreviations
	List of Figures
	List of Algorithms
	Index
	Bibliography

