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Abstract
Given a text, rank and select queries return the number of occurrences of a character up to a position
(rank) or the position of a character with a given rank (select). These queries have applications
in, e.g., compression, computational geometry, and pattern matching in the form of the backwards
search—the backbone of many compressed full-text indices. A wavelet tree is a compact data
structure that for a text of length n over an alphabet of size σ requires only ndlog σe(1 + o(1)) bits
of space and can answer rank and select queries in Θ(log σ) time. Wavelet trees are used in the
applications described above.

In this paper, we show how to improve query performance of wavelet trees by using a 4-ary tree
instead of a binary tree as basis of the wavelet tree. To this end, we present a space-efficient rank
and select data structure for quad vectors. The 4-ary tree layout of a wavelet tree helps to halve
the number of cache misses during queries and thus reduces the query latency. Our experimental
evaluation shows that our 4-ary wavelet tree can improve the latency of rank and select queries by a
factor of ≈ 2 compared to the wavelet tree implementations contained in the widely used Succinct
Data Structure Library (SDSL).
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1 Introduction

Wavelet trees [21] are a self-indexing rank and select data structure, i.e., they can answer
rank (how often does a symbol occur in a prefix of length i) and select (where does a symbol
occur for the i-th time) queries, while still allowing to access the text. This makes them
an important building block for compressed full-text indices, e.g., the FM-index [15] or
the r-index [18], where they are used to answer rank queries during the pattern matching
algorithm—the so called backwards search.

Due to the plethora of applications, a lot of research has been focused on the efficient
construction of wavelet trees in both practice and theory. We give an overview of the
state-of-the-art in Section 3. However, there exists barely any research focusing on the query
performance of wavelet trees. While there exist alternative representations of the wavelet tree
(namely the wavelet matrix, see Section 2) that provide better practical query performance,
the better query performance is more of a byproduct of a space efficient representation for
large alphabets.

The main building block of wavelet trees (and wavelet matrices) are bit vectors with
binary rank and select support. There exist many different approaches tuning the rank and
select support for query time and/or space overhead. Faster binary rank and select queries
directly translate to faster queries on wavelet trees. We refer to Section 3 for an overview of
binary rank and select support for bit vectors. However, improving only the binary rank and
select data structure still not fully utilizes the full range of optimizations when it comes to
answering queries using wavelet trees.

Our Contributions. The main result of this paper is a practical wavelet tree implementation
that improves the query latency in practice by a factor of ≈ 2 compared to its competitors
implemented in the widely used Succinct Data Structure Library (SDSL) [19]. To this end,
we show that representing a wavelet tree as 4-ary tree instead of as binary tree results in
half as many cache misses, see Section 5. We focus on the query latency of the wavelet tree,
i.e., the amount of time it takes to answer a single query, because the latency is the most
relevant time measurement in practice for many applications, e.g., the backwards search in
the FM-index [15], where queries depend on one another.

Instead of using bit vectors, our 4-ary wavelet tree quad vectors, i.e., vectors over the
alphabet [0, 4), with rank and select support, see Section 4. Here, our rank and select data
structure for quad vectors has a space overhead of only 7.81% and only 6.25% if only rank
support is required.

2 Preliminaries

A bit vector is a text over the binary alphabet {0, 1}. On text T of length n over an alphabet
Σ = [0, σ), we want to answer rank, and select queries for i ∈ [0, n) and α ∈ Σ:

rankα(i) = |{j < i : T [j] = α}| and
selectα(i) = min{j : rankα(j) = i}.

Rank and select queries on bit vectors of length n can be answered in O(1) time with
o(n) additional bits [7, 23]. The most significant bit (MSB) of a character is the bit with the
highest value. For simplicity, we assume that the MSB is the leftmost bit. The i-th MSB is
the bit with the i-th highest value. A length-` bit-prefix of a character are the character’s `
MSBs.

CVIT 2016
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Figure 1 Wavelet tree (left) and a wavelet matrix (right) for the text accessandselect over the
alphabet {a (000)2, c (001)2, d (010)2, e (011)2, l (100)2, n (101)2, s (110)2, t (111)2} (bit represent-
ation of the characters is given in gray). Note that we depict the text for better readability only;
the text is not part of the wavelet tree or wavelet matrix. The wavelet tree can be transformed to
a level-wise wavelet tree by concatenating all bit vectors in nodes connected by an arrow. In the
wavelet matrix, we can see the same intervals as in the wavelet tree on the same level.

A wavelet tree [21] is a binary tree, where each node represents a subsequence of the
text. Each node contains character with a specific length-k bit-prefix. The root of a
wavelet tree represents all characters with the length-0 bit prefix ε, i.e., all characters. Then,
whenever we visit a left child of a node that represents characters with bit-prefix α, the child
represents character with-bit prefix α0. The right child represents characters with bit-prefix
α1. Alternatively, you can say that the left child represents characters that are in the lower
half of the alphabet represented in its parent and the right child represents characters in the
upper half. Here, the root represents characters in the whole alphabet.

On the `-th level of the tree (the root has level 1) the characters are represented by their
`-th MSB. Hence, within a node, all represented characters are stored in a bit vector. If we
concatenate the bit vectors of all nodes on the same level, we obtain a level-wise wavelet
tree. We say that all characters that have been represented in a node of the non-level-wise
wavelet tree are in the same interval, see Figure 1 for an example. All intervals in a wavelet
tree can be identified by the bit prefix of the characters represented in the interval. In the
following, when we mention wavelet trees, we refer to level-wise wavelet trees.

The wavelet matrix [8] is an alternative representation of the wavelet tree. The first
level of the wavelet matrix are the MSBs of the characters, the same as the first level of the
wavelet tree. Then, to compute the next level `, starting with the second, the text is stably
sorted using the (` − 1)-th MSB as key. Just as with the wavelet tree, the characters are
represented using their `-th MSB on each level `. The order of the characters on each level is
given by the stably sorted text. Sorting the text looses the tree structure of the wavelet tree.
However, the same intervals as in the wavelet tree occur on each level, just in a different
order.1 A comparison of the structure of a wavelet tree and a wavelet matrix can be found
in Figure 1. In addition to the bit vectors, the number of zero in each level is stored in the
array Z, which are needed to answer queries faster using one less binary rank and/or select
query per level.

In the following, we use wavelet tree to refer to both wavelet tree and wavelet matrix.
Note that we implemented the wavelet matrix to benefit from the fewer binary rank and/or
select queries, making them the better choice in practice. Using a wavelet trees for a text of
length n over an alphabet of size σ, access, rank, and select queries can be answered in time
O(log σ) time. A wavelet tree requires ndlog σe(1 + o(1)) bits of space. The sublinear term
is needed for the rank and select support of the bit vectors.

1 They appear in the bit-reversal permutation order, see https://oeis.org/A030109, last accessed
2023-01-16.

https://oeis.org/A030109
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3 Related Work

The compact and compressed representation of texts with support for access, rank, and select
queries (among others) is an active field of research. For example, bit vectors with rank and
select support, i.e., binary rank and select data structures, are often a building block for
succinct data structures.

Binary Rank and Select Data Structures. For bit vectors of length n, rank and select
data structures with constant query time can be constructed in linear time requiring o(n)
space [7, 23]. Practical and well-performing implementations of these data structures can
be found in the SDSL [19]. The currently most space efficient rank and select support for a
size-u bit vector that contains n ones requires only log

(
u
n

)
+ u

logu + Õ(u 3
4 ) bits (including

the bit vector) [32]. In practice, the currently fastest select data structures are by Vigna [40].
Allowing for multiple configurations using a tuning parameter, they outperform all other
select data structures while being space-efficient. However, they still require much more space
than the currently most space-efficient data structures by Zhou et al. [41] that have recently
been improved w.r.t. query throughput by Kurpicz [26]. There exist many more practical
rank and select data structures that are outperformed by the ones mentioned above, e.g.,
[20, 25, 31]. Another line of research considers compressed [1, 5, 6, 38] and mutable [34, 35]
bit vectors with rank and select support.

Wavelet Trees and Wavelet Matrices. Wavelet tree construction is a well studied field.
Let T be a text of length n over an alphabet of size σ. The asymptotically best sequential
wavelet tree construction algorithms require O(n log σ/

√
logn) time [2, 29]. These approaches

make use of vectorized instructions, i.e., SIMD (single instruction, multiple data), to achieve
their running time. There also exist implementations that make use of vectorized instructions
available in modern CPUs [24] and are reported to be the fastest in practice. In shared memory,
wavelet trees can be computed in O(σ+logn) time requiring only O(n log σ/

√
logn) work [39].

In practice, the fastest construction algorithms are based on domain decomposition [27, 17],
where partial wavelet trees are computed in parallel and are then merged also in parallel,
using a bottom-up construction for the partial wavelet tree construction [9]. Wavelet trees
can also be computed in other models of computation, e.g., distributed memory [10] and
external memory [12]. Wavelet trees can also be compressed. To this end, the wavelet tree
is constructed for the Huffman-compressed text.2 The bit vectors in the Huffman-shaped
wavelet tree requires ndH0(T )e bits of space, where H0 is the zeroth order entropy of the
text. A fully functional wavelet tree requires binary rank and select support on the bit
vectors and needs ndlog σe(1 + o(1)) bits of space (ndH0(T )e(1 + o(1) bits of space for the
Huffman-shaped wavelet tree). Multi-ary wavelet trees have been considered before for
compressed representation of sequences [16]. For more information on wavelet trees, we point
to the multiple wavelet tree surveys [14, 22, 28, 30].

Alternative Representations of Sequences. There exist other compressed representations
of a text that can answer rank and select queries, while still allowing to access the text.
Recently, a practical block tree implementation has been introduced [3]. A block tree is
especially useful for highly compressible text, as they require only O(z log(n/z)) words space,
where z is the number of Lempel-Ziv factors of the text. Further dictionary-compressed

2 To be precise, bit-wise negated canonical Huffman codes are required [9].

CVIT 2016
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representations allow for rank and select support in optimal time in compressed space [37]
with respect to the size of a string attractor [36] of the text. Rank and select support can
also be added to grammar compressed texts of size n over an alphabet of size σ. For a
grammar of size g, rank and select support requires O(σg) space [4, 33]. Here, queries can
be answered in O(logn) time.

4 Quad Vectors

At the heart of our 4-ary wavelet trees is a space-efficient and fast rank and select data
structure for quad vectors. Our data structure uses a block-based design and follows the
popular memory layout for block-based rank and select data structures for bit vectors [26, 41]
adapted to quad vectors. In a block-based design, the number of occurrences of different
symbols is stored for blocks of different size. The number is stored either for the whole input
up to the block or for the input contained in a bigger block. For our quad vector, we store
the following information for each symbol α ∈ {00, 01, 10, 11}:

Super-Blocks cover 4096 symbols and store the number of occurrences before the start of
the super-block.
Blocks cover 512 symbols and store the number of occurrences before the start of the
block within the super-block.

For each super-block, we only have to store seven blocks, as there are no occurrences of any
symbol before the first block within the super-block, i.e., all counters are zero. The counter
within each block can be stored in just 12 bits, as the maximum number of occurrences
of a single symbol within one super-block before the last block is 3584 (dlog 3584e = 12).
Therefore, the counters of the seven blocks fit into 84 bits and can use 44 bits for the counter
of the super-block, when using 128 bits for both super-block and the pertinent blocks.3
Additionally, storing super-blocks and pertinent blocks interleaved, reduces the number of
cache misses and allows for the usage of vectorized instructions [26].

Since we require 128 bits for each super-block including its blocks for each symbol, the
space-overhead of the rank data structure is 512/8192 = 6.25 %. This is twice as much as
the bit vector rank data structure requires [26]. To answer select queries efficiently, we store
every 8192-th occurrence of a symbol. This increases the required space by 1.5625%.

Answering queries using this approach is similar to the bit vector case. Assume we want to
get the rank of the symbol α at position i. We simply have to identify the super-block (i/4096)
and the block ((i%4096)/512) where the position occurs in. Adding up these counters, we
only have to scan (i%512) positions within the block and add the number of occurrences
of α in the block up to that position to the result. All this can be done in constant time
To find the position where the j-th α occurs, we first identify the closest smaller sampled
position. Starting from there, we do scan super-blocks until we have identified the super-block
containing the position. Then, we continue with scanning block until we have identified the
block containing the position. Finally, we scan the quad vector (within the block) until we
have found the correct position and return the index. While this may not be a constant time
query, it is very fast in practice, see Section 6.

3 In practice, computer words have size 8, 16, 32, 64, 128, and on modern machines even 256 and 512
bits. Aligning the size of (super-)blocks with computer words improves the performance.
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Figure 2 4-ary wavelet tree (left) and a 4-ary wavelet matrix (right) for the text accessandselect
over the alphabet {a (000)2, c (001)2, d (010)2, e (011)2, l (100)2, n (101)2, s (110)2, t (111)2} (bit
representation of the characters is given in gray), i.e., the same input text as in Figure 1.

Optional Improvements
In the following, we describe optional improvements that help to either reduce cache misses
or reduce the space of the data structure. Note that we did not include the space-saving
features in our experimental evaluation, as preliminary experiments showed that they heavily
impact the query performance outweighing the benefit of the saved space.

Reducing Cache Misses by Doubling the Space. A cache line on nearly all hardware has
size 64 bytes. To a super-block and its pertinent blocks fit into one cache line, the number of
symbols per super-block and block can be halved. By doing so, we double the number of
counters we have to store, but we also guaranteed at most two cache misses per rank query
and three per select query. However, by doing so, the space-overhead increases to 12.5 %.

Saving Space by Computing Information. To save space, we can only save the information
for three of the four symbols, as we can compute all information for the fourth symbol using
the information of the other three symbols. This technique is used for bit vectors, only
information for one of the two symbols is stored. Note that the sample index for faster select
queries has to be stored for all four symbols. Removing the information for one symbol saves
25% of memory, hence the memory overhead is now only 4.6875 % (or 9.375 % if we use the
technique described above to reduce the number of cache misses).

Saving Space by Encoding Blocks using Elias-Fano. Using the Elias-Fano encoding [11,
13], a monotonic increasing sequence of k integers in a universe of size u can be stored using
only k(2+log(u/k)) bits while allowing constant time access to all integers. Since the number
of occurrences of symbols withing super-blocks are monotonic increasing sequences, we can
use Elias-Fano encoding to store them. To this end, we introduce mega-blocks that cover
218 symbols. We store the number of occurrences of each symbol from the beginning of the
text to the beginning of each mega-block. In addition to the space-saving measure described
above, we now also encode the information for the remaining three symbols. We now can
store the following information for each super-block: Three 18-bit counters for three symbols
storing the number of occurrences from the beginning of the mega-block and the Elias-Fano
encoded sequences that require at most 141 bits. Overall, we require 195 bits for all three
symbols. Therefore, this variant has a space overhead of 2.41%.

5 4-Ary Wavelet Tree

When answering queries using a wavelet tree, the query is translated to O(log σ) binary rank
and select queries. In practice, most of the time to answer a query on the wavelet tree is
spend answering these binary rank and select queries. Additionally, on each level of the

CVIT 2016
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wavelet tree, the binary rank and select queries will result in at least one cache miss, which
again is where most of the time for answering a binary rank or select query is used for. To
reduce the number of cache misses, we have to reduce the number of levels of the wavelet tree.
To this end, we make use of 4-ary wavelet trees. By doubling the number of children, we
(roughly) halve the number of levels. If dlog σe is odd, the 4-ary wavelet tree has ddlog σe/2e
levels.

In a 4-ary wavelet tree, we represent the characters on each level using two bits that we
store in a quad vector. If dlog σe is odd, characters on the last level are represented using a
single bit in a bit vector. In the first level, each character is now represented by its two MSBs
and all characters share a length-0 bit-prefix. When visiting the first child of a node that
represents characters with bit prefix α, its first child represents characters with bit-prefix
α00, the second child represents characters with bit-prefix α01, the third child represents
characters with bit-prefix α10, and the fourth child represents characters with bit-prefix α11.
Alternatively, you can say that the first child represents characters that are in the lower
quarter of the alphabet represented by its parent, the second child represents characters that
are in the second quarter, and so on. The root represents the whole alphabet. See Figure 2
for an example.

Querying a 4-ary wavelet tree works similarly to querying a “normal” wavelet tree. Since
there are now four children, more book keeping is necessary to keep track of the interval that
is visited during the query. This does not result in more rank and select queries on the quad
vectors (and possibly bit vector on the last level). Overall, the additional book keeping is
less expensive than the cache misses on each level as we can clearly see in our experiments in
Section 6.2.

There also exist a “4-ary” wavelet matrix representation of the 4-ary wavelet tree. Here,
we also use two bits to represent the characters at each level. Again, the first level of the
wavelet matrix is the same as the first level of the 4-ary wavelet tree. Then, to compute the
next level ` starting with the second, the text is stably sorted using the (2`− 1)-th and 2`-th
MSBs as key. As with the “normal” wavelet tree and wavelet matrix, this results in the same
intervals, where characters with the same bit-prefix are represented, just in a different order.
Also, queries for the wavelet matrix can be adopted to work with the (4-ary) wavelet matrix
in the same way we adopted the queries of the wavelet tree. To do so, we now have to store
the exclusive prefix sum of the histogram of all entries of all levels (as a replacement of Z in
the “normal” wavelet matrix. Then again, querying the 4-ary wavelet matrix works similarly
to querying the “normal” wavelet matrix.

6 Experimental Evaluation

First, we discuss our experimental setup. Then, in Section 6.1, we compare our quad vector
implementation with state-of-the-art bit vectors. Finally, in Section 6.2, we show the benefit
of using 4-ary wavelet trees instead of wavelet trees based on bit vectors.

Experimental Setup. All the experiments are performed using a single thread on a server
machine with 8 Intel i9-9900KF cores with base frequencies of 3.60 GHz running Linux 5.19.0.
Each core has a dedicated L1 cache of size 32 KiB, a dedicated L2 cache of size 256 KiB, a
shared L3 cache of size 16 MiB, and 64 GiB of RAM. The code is compiled with GCC 12.2.0
using the highest optimization setting (i.e., flags -O3 -march=native -DNDEBUG -flto). Our
implementation is available at https://github.com/MatteoCeregini/quad-wavelet-tree.
A Rust implementation is available at https://github.com/rossanoventurini/qwt.

https://github.com/MatteoCeregini/quad-wavelet-tree
https://github.com/rossanoventurini/qwt
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Latency vs. Throughput. The latency of an operation is the time it takes to complete it,
which is the time between the start of the operation and when the result becomes available.
The throughput of an operation is the number of operations completed in a time span. This is
not the same as dividing the time span by the latency since any modern CPU uses pipelining
to parallelize the execution of several operations at the same time. This is possible only if
these operations are independent, e.g., the input of an operation does not depend on the
output of a previous one. The result of this parallelization is that the throughput is always
at most the latency, but usually much smaller.

In the case of access, rank, and select queries, the query time in large sequences is
dominated by the cost of the cache misses caused by the access of portions of the indexed
sequence. Since the CPU can issue several memory requests at the same time, measuring the
throughput hides a part of the cost of these cache misses paid by the queries that the CPU
can execute in parallel.

In our experiments, we measured the latency of access, rank, and select by forcing the
input of each query to depend on the output of the previous one. This is consistent with the
use of the queries in real settings. For example, any query on a wavelet tree decomposes
into several dependent queries on the underlying binary or 4-ary vector. Similarly, more
advanced queries supported by compressed text indexes (e.g., CSA or FM-index) decompose
into several dependent queries on the underlying wavelet tree.

6.1 Experimental Evaluation of Quad Vectors
In this section, we compare our quad vectors with existing bit vectors, as there are to the
best of our knowledge no other quad vector implementations publicly available.

Data Structures We include the following data structures in our experiments.
SDSL is the implementation of binary vectors of the popular SDSL library [19].4 The
binary vector is enhanced with the rank_support_v data structure to support rank queries.
It also uses select_support_mcl data structure to support select queries, which implements
Clark and Munro’s approach to compute select queries [7].
PASTA is the implementation of binary vectors of the PASTA-toolbox library [26].5 The
binary vector is enhanced using the FlatRankSelect data structure to support rank and
select queries. Our quad vectors a similar memory layout and vectorized instructions to
answer queries.
QV256 and QV512 are our implementations of quad vectors with blocks of size 256 and
512 symbols, respectively. Our implementation follows the description in Section 4.

Datasets. In these experiments, we generate random binary sequences with a size that
ranges from 32 KiB to 2 GiB, where each bit has a fifty percent chance of being zero or one.
We obtain 4-ary sequences just by using consecutive pairs of bits of the generated binary
sequences as quad symbols.

The sizes have been selected so that the three smallest datasets of size 32KiB, 256KiB,
and 16MiB, respectively, match the sizes of the three levels of cache of our server. For the
remaining sizes, we doubled the size of the dataset up to 2 GiB. For the first three datasets,
we expect to observe a query time dominated by the cost of performing the bit-wise and

4 SDSL library available at https://github.com/simongog/sdsl-lite.
5 Pasta-toolbox library available at https://github.com/pasta-toolbox/bit_vector.

CVIT 2016
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Figure 3 Comparison of access, rank, and select query latency for our quad vectors with bit
vectors. Inputs on the right of the gray dashed line do not fit into the cache any more.

arithmetic operations needed to solve the query. Instead, for the other datasets, the query
time will be dominated by the cost of accessing the necessary data from memory.

6.1.1 Access, Rank, and Select Queries

In the experiments, a reported running time is the average time of three runs. For each run,
each data structure executes 1 million queries of the target query type. We generate the
queries as follows. Let S[0, n) be the indexed sequence.

access: each query asks to access the symbol at a random position in the sequence.
rank: we generate a random position i ∈ [0, n), access that position to retrieve the bit or
symbol S[i] and use 〈i, S[i]〉 as a rank query.
select: we select a symbol c at random following their distribution in the sequence, i.e.,
more frequent symbols have a higher probability of being selected. Then, we generate
a random value r ∈ [1, occ(c)], where occ(c) is the number of occurrences of c, and use
〈r, c〉 as a select query.

As we mentioned before, we want to measure the latency of a query. For this reason, we
modify the random positions above by adding the result produced by the preceding query
(modulo n for rank and access queries, or modulo occ(c) for select). The results are plotted
in Figure 3.

Access Queries. Expect for very small datasets (32 KiB and 256 KiB), all four data
structures have roughly the same access time, with differences that are within 10%. This is
not surprising because all of them perform few arithmetic and bit-wise operations to extract
either one or two bits, which fit within the same cache line. Therefore, for small datasets,
the query time is bounded by the time required to perform the bit-wise operations. Instead,
for larger datasets, the query time is close to the cost of accessing a cache line from memory.
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Rank Queries. For small datasets, PASTA is the fastest being from 1.05 to 1.18 times
faster than SDSL, from 1.05 to 1.57 times faster than QV256, and from 1.18 to 1.31 times
faster than QV512. We would expected SDSL to be the fastest and QV512 to be the slowest,
since in this regime the cost is dominated by the CPU and in particular by the number of
popcnt instructions6 needed to compute the rank within a block. On average SDSL needs
just one popcnt while PASTA and QV256 need 4 popcnts, and QV512 need 8 popcnts. For
larger datasets, the cost is dominated by the cost of a cache miss. Here the data structures
have roughly the same performance being always within 20% of each other. We observe that
SDSL, PASTA, and QV256 need to access two cache lines to compute a rank: the cache line
with counters for the superblock and the blocks and the cache line with data. Instead, QV512
needs an extra cache line because its block spans two cache lines. However, this does not
induce any major slowdown (that is, paying two full cache misses per query) because these
memory operations are independent of each other and the CPU can issue them in parallel,
thus reducing the cost of the rank operation to just one cache miss.

Select Queries. For small datasets, PASTA and SDSL are the fastest. They are up to 2
times faster then QV256 and QV512. This is expected since searching for a symbol within
a basic block in a quad vector is more expensive than bitvectors, since they require more
bit-wise operations. For bigger input sizes, PASTA is the fastest and is about 15− 35% faster
then the other data structures. Instead, SDSL, QV256 and QV512 have take approximately
the same time to answer a select operation. This decrease in performance of SDSL can be
explained by the fact that it requires a larger amount of data to compute the result of a
selection operation, which results in more cache misses.

6.1.2 Space Overhead
As SDSL is designed to have small blocks of 64 bits, which explains why it is faster for small
datasets compared to PASTA, QV256, and QV512. This efficiency for small datasets is paid
at a cost of a much larger space overhead. The space required for the rank query support is
the following:

SDSL uses the rank_support_v data structure which logically divides the bit vector into
64-bit basic blocks and 512-bit superblocks. For each superblock, 128 extra bits are used
to store the counters relative to the superblock and its basic blocks. Therefore, it requires
a space overhead of 128

512 = 25%.
PASTA uses the FlatRankSelect data structure which follows a two-layer approach with
512-bit basic blocks and 4096-bit superblocks. For each superblock, it uses 128 bits to
store the counters relative to the superblock and its basic blocks. Thus, the overhead
caused by the counters is 128

4096 = 3.125%.
QV256 and QV512 require a space overhead of 6.25% and 12.5% respectively to store the
superblock and basic block counters.

To support for select queries, additional space overhead is necessary for all tested data
structures:

SDSL uses the select_support_mcl data structure which requires in the worst case 37.5%
space overhead.

6 The popcnt instructions returns the number of one bits in a computer word and is supported by most
modern CPUs.
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PASTA uses the FlatRankSelect data structure that stores the position of every 8192-th
occurrence of each bit as a 32-bit unsigned integer. Thus, the space overhead caused
by the samplings is 32×2

8192 = 0.78125%. Note that the select support requires the rank
support to be available.
QV256 and QV512 follow the same strategy as PASTA, but now the possible symbols
are four: every 8192-th occurrence of each symbol is stored as a 32-bit unsigned integer.
Thus, the space overhead caused by the samplings is 32×4

8192 = 1.5625%. As with PASTA,
the rank support has to be available.

6.2 Experimental Evaluation 4-Ary Wavelet Trees
In this section, we compare our 4-ary wavelet tree implementation with other wavelet tree
implementations, which are all based on bit vectors. Again, to the best of our knowledge
there exists no publicly available k-ary wavelet tree implementation for k > 2.

Data Structures. In our experiments, we compare the following data structures. Note
that in fact we compare wavelet matrices, as those are faster in practice as wavelet trees.
All implementations mentioned below contain support for both wavelet trees and wavelet
matrices. The wavelet matrices are build on top of the bit vectors that we evaluated in
Section 6.1.

SDSL is the implementation of wavelet matrices built on bit vectors of the SDSL library.
The data structure is built upon the SDSL’s bit vector.
PASTA is the implementation of wavelet matrices built on bit vectors of the PASTA-
toolbox library. The data structure is built upon the PASTA-toolbox’s bit vector.
QWM256 and QWM512 are our implementations of wavelet matrices built on quad vectors
with blocks of size 256 and 512 symbols, respectively, that we describe in Section 4
without the space optimization of using a bit vector as last level when dlog σe is odd.

Datasets. In these experiments, we measure the access, rank and select query time of the
data structures on text prefixes between 32 KiB and 2 GiB in size (we use a prefix of the
given text for smaller input sizes.), generated from the following datasets.

English is the concatenation of English text files selected from Gutenberg Project.7 The
alphabet size is 239 and the file size is about 2.06 GiB.
DNA is a sequence of newline-separated gene DNA sequences obtained from files from
Gutenberg Project.8 The alphabet size is 16 and the file size is about 0.4 GiB. Since the
file is too small for our experiments, the prefixes were extracted from a big enough text
obtained by concatenating the DNA text with itself several times.
random16 and random256 are random texts over an alphabet of size 16 and 256, resp.
The characters of the text are chosen uniformly at random. During our experiments, all
data structures use the same random inputs. We use these texts to show that the query
latency does not depend on the structure of the text.

6.2.1 Access, Rank, and Select Queries
The queries are generated in the same way as described in Section 6.1. Again, we measure
latency in the experiments. The results are depicted in Figure 4.

7 The file is available at http://pizzachili.dcc.uchile.cl/texts/nlang/
8 The file is available at http://pizzachili.dcc.uchile.cl/texts/dna/

http://pizzachili.dcc.uchile.cl/texts/nlang/
http://pizzachili.dcc.uchile.cl/texts/dna/
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Figure 4 Comparison of access, rank, and select queries on different wavelet matrix implementa-
tions for on different inputs and input sizes. Inputs on the right of the gray dashed line do not fit
into the cache any more.

CVIT 2016



23:12 Faster Wavelet Trees with Quad Vectors

Access queries. On the English text, we get the following results. For datasets up to
256KiB SDSL is overall the fastest, being up to 1.3 faster than QWM256 and QWM512
and up to 2.02 times faster than PASTA. For datasets bigger then 256 KiB, QWM256 and
QWM512 have similar query times and are also the fastest, being 1.6 to 1.78 times faster
than SDSL and 1.8 to 2 times faster than PASTA. We obtain similar results for random256,
hinting that the results do not depend on the structure of the input. On the DNA text, the
overall picture looks the same. However, due to the smaller alphabet size the latencies are
overall lower. For small datasets, QWM256 and QWM512 are the fastest while having similar
query times. They are up to 2.67 times faster than SDSL and 3.89 times faster than PASTA.
For larger datasets, QWM256 and QWM512 are still the fastest being 1.57 to 1.81 times faster
than SDSL and 1.82 to 2.24 times faster than PASTA. Again, we obtain a similar result for
random16.

Rank queries. On prefixes of the English text smaller than or equal to 256KiB, PASTA is
the fastest, being up to 1.51 times faster than QWM256, up to 1.73 times faster then QWM512
and up to 1.71 times faster then PASTA. For datasets bigger than 256 KiB, QWM256 is the
fastest, being roughly 10% faster then QWM512 and 1.75 to 1.92 times faster than SDSL
and 1.64 to 2.04 times faster than PASTA. SDSL is overall the fastest for smaller inputs of
the DNA text, being roughly up to 20–25% faster then the other data structures. For largest
datasets, QWM256 is the fastest, being 1.7 to 1.9 times faster than SDSL. QWM512 is at
approximately less than 10% slower than QWM256. As for access queries, the data structures
behave the same for random inputs.

Select queries. For English inputs smaller than or equal to 256 KiB, SDSL is the fastest,
being about up to 1.3 times faster then QWM256 and QWM512 and up to 1.34 times faster
then SDSL. For datasets bigger than 256 KiB, QWM256 and QWM512 are the fastest while
having similar query access times: they are about 1.77 to 2.4 times faster than SDSL and
about 1.46 to 1.81 times faster then PASTA. For smaller DNA inputs, PASTA is overall the
fastest, being up to 14% faster than the other data structures. For bigger datasets QWM512
and QWM256 are the fastest while having similarly query times. They are approximately
1.72 to 2.42 times faster than SDSL and about 1.32 to 1.77 times faster than PASTA. As for
the queries before, the overall picture is the same for select queries on random inputs for all
data structures tested in this evaluation.

6.2.2 Space Overhead
The space overhead of wavelet matrices is the same given by the sum of the space overheads
required to both support rank and select queries on the underlying bit vectors or quad
vectors that we described in Section 6.1 (plus a small overhead introduced by each wavelet
matrix implementation). Note that this space overhead can be significant depending on the
data structure used for rank and select support. For example, on the 1GiB prefix of the
English text, the SDSL wavelet matrix require 48% additional space. The most space-efficient
implementation is PASTA with a space-overhead of only 3.71%. Our 4-ary wavelet matrices
require only 6.44% (QWM256) and 12.69% (QWM512) additional space.

7 Conclusion

We have shown that using quad vectors instead of bit vectors as basis for wavelet trees
improves the query latency by reducing the number of cache misses. While bit-vector-based
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wavelet trees outperform our 4-ary wavelet trees for inputs that fit into cache, on more
realistic inputs our new 4-ary wavelet trees heavily outperform all other tested wavelet trees
with speedups up to 2.67 (access), 1.9 (rank), and 1.7 (select) compared to currently used
wavelet tree implementations contained in the SDSL and PASTA-toolbox.

It remains an open problem to combine the 4-ary Wavelet tree layout with the sublinear
construction algorithm based on vectorized instructions. Another interesting line of future
research are compressed 4-ary wavelet trees, e.g., Huffman-shaped 4-ary wavelet trees. Also,
our space-saving technique using Elias-Fano encoding could be adopted to bit vectors. Here,
this approach is promising, as fewer information has to be computed and the information for
even more blocks fits into a single cache line.
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