
Scalable Text Index Construction

Timo Bingmann1, Patrick Dinklage2, Johannes Fischer2, Florian Kurpicz2, Enno
Ohlebusch3, and Peter Sanders1

1 Karlsruher Institut für Technologie, Germany tb@panthema.net, sanders@kit.edu
2 Technische Universität Dortmund, Germany patrick.dinklage@tu-dortmund.de,

johannes.fischer@cs.tu-dortmund.de,
florian.kurpicz@tu-dortmund.de

3 Universität Ulm, Germany enno.ohlebusch@uni-ulm.de

Abstract. We survey recent advances in scalable text index construction with a
focus on practical algorithms in distributed, shared, and external memory.

Keywords: text indices, suffix array, suffix tree, wavelet tree, Burrows-Wheeler
transform, FM-index, distributed memory, shared memory, external memory

1 Introduction

Texts occur in many different domains, ranging from natural language texts over source
code to DNA and protein sequences, and their amount is ever-increasing. The field of
algorithm and data structure research on strings is often referred to as Stringology. One
important aspect within this line of research is the efficient construction of text indices.
A text index is a data structure that provides additional information for a given text to
speed up answering different types of queries, e.g., pattern matching queries that ask
if (or how often, or where) a pattern occurs in the text. We focus on full-text indices
for possibly unstructured texts, which allow the user to query for arbitrary patterns
(this excludes, e.g., inverted indices). Real-world applications of text indices can be
found, for example, in computational biology where text indices are a crucial part of the
software for DNA alignment [134]. However, the amount of textual data is increasing
significantly faster than the computational capacity of ordinary computers. For example,
in 2008 the 1000 Genomes Project (1KGP) was launched to collect and sequence the
genomes of thousands of people, whereas, in 2020, the 1+Million Genomes Initiative
(1+MG) started to collect at least one million genomes, making this collection 1000
times larger. Therefore, scalable construction algorithms that can handle the massively
growing amount of text are necessary.

In this survey, we discuss the current state of the art in scalable text index construc-
tion. We focus on distributed, external, and shared memory construction algorithms for
different text indices and their applications. While there already exist surveys focussing
on particular indices (e.g., suffix arrays [28,172] or wavelet trees [63 SPP,149,160]),
or models of computation (e.g., external memory [56,23]), this chapter tries to give a
more unified view. To this end, we point out common techniques that are used in differ-
ent models of computation or in the computation of different text indices.

2 Bingmann et al.

ST
SM DM

SA
SM DM EM

WT
SM DM EM

LCP
SM DM EM

BWT
SM DM EM

FM-Index
SM

r-Index [91]

LZ77
Factorization

LZ77-Index [90]

Fig. 1: Relations of text indices. In this article, we consider text indices that have scal-
able construction algorithms. The labels SM, DM, EM mark whether such construction
algorithms in shared, distributed, and external memory exist. Note that the LZ77 fac-
torization itself is a text compression and not an index. We use arrows () to denote
indices that are used (in practice) to compute the targeted text index or if they are a
special case () of the targeted index. Diamonds () are used to denote indices that
are part of the targeted text index.

This survey is structured as follows. First, in Section 2, we introduce models of
computation and give an overview of (string) sorting algorithms and further building
blocks that are required as basic tools for text index construction. The main body of
work can be found in Section 3. Here, we discuss the scalable construction of different
text indices. We start with the suffix array (SA), one of the most well-researched text
indices, and the longest common prefix (LCP) array, which often accompanies the SA.
Next, we take a look wavelet trees (WT) and the Burrows-Wheeler Transform (BWT),
which both are important parts of the FM-index, a compressed text index frequently
used in practice. Then, we discuss algorithms for the suffix tree (ST) and space efficient
representations thereof. See Fig. 1 for an overview of the text indices and their relations.
While most of the discussed work solely focuses on the construction of the text indices,
we also show approaches to answer queries on text indices in distributed memory. Fi-
nally, in Section 4, we show real-world applications of text indices in bioinformatics
and text compression before we address future challenges in Section 5.

2 Preliminaries

Let T = T [0] . . .T [n−2]$ be a text of length n over an alphabet Σ = [0,σ), where
we assume that T is terminated with an end-of-file or sentinel symbol $ with $ /∈ Σ and
$<α for all α ∈Σ . A text over an alphabet of size σ = 2 is called bit vector. Usually, bit
vectors do not contain a sentinel. We call T[i.. j) = T [i] . . .T [j−1] a substring of T for
i, j ∈ [0,n]. The substrings T[0..i) and T[j..n) are called prefix and suffix for i, j ∈ [0,n].

2.1 Models of Computation

In this section, we introduce models of computation that are relevant for the rest of this
chapter and give pointers to software libraries that are commonly used to implement

Scalable Text Index Construction 3

algorithms in those models. The starting point is the sequential random access machine
(RAM) model [182], where we have a single processing element (PE) that contains
multiple registers to perform operations on data and a main memory, which can be
accessed in constant time. However, real-world systems are often more complex and
require more sophisticated models.

One of these models is the external memory (EM) model [4]. Here, we have an
internal memory of size M words and an external memory of unlimited size that is
much slower to access randomly. To compensate for this, transfer between EM and
RAM happens in blocks of B consecutive words. Such a transfer is called I/O operation
(I/O for short). The cost of external memory algorithms is then described by the number
of required I/Os, e.g., scanning through N elements requires Θ

(N
B

)
I/Os, and sorting N

elements requires sort(N) := Θ

(
N
B log M

B

N
B

)
I/Os. The software libraries STXXL [57]

and TPIE [9] implement the most commonly used external memory algorithms and
data structures. A (practical) relaxation of the model is the semi-external model, where
we allow random access to either the input or output, but not both. The Succinct Data
Structure Library (SDSL) [94] provides implementations of semi-external construction
algorithms for various data structures.

We also consider two parallel machine models, where by p we always denote the
number of available PEs. The first is the parallel random access machine (PRAM),
where all PEs have access to the same (shared) memory. There are various PRAM
variants differentiating between which types of concurrent memory reads/writes are al-
lowed; for practical algorihms on a multi-core processor one should only use exclusive
writes, implying that the Concurrent Read Exclusive Write (CREW) model is best for
analyzing algorithms. In the analysis, the work and depth are of interest. The former
is the total number of operations performed, and the latter is the longest sequence of
sequential dependencies in the algorithm. When implementing shared memory algo-
rithms, Cilk [38] (now deprecated), OpenMP [53], Intel’s TBB [174], Microsoft’s Par-
allel Patterns Library (PPL), or built-in concurrency features of the programming lan-
guage, e.g., thread in C++11, are often used to express parallelism. The Multi-Core
Standard Template Library (MCSTL) [188] provides parallel algorithms and can be
used as the parallel mode of the GNU C++ Standard Library. Recently, ParlayLib [36]
was introduced as a library containing efficient implementations of the parallel algo-
rithms in the C++ Standard Library.

The distributed memory model is our second parallel machine model. Here, com-
munication between different PEs is conducted by sending messages over a network,
and PEs have only local memory. Often, the cost of such a message is given as a startup
cost plus a cost that depends on the size of the message. This is also reflected in the
bulk-synchronous parallel model [200], where algorithms are divided into a sequence
of supersteps consisting of three phases: local work, communication, and synchroniza-
tion. The cost of an algorithm is then the sum of the costs of all supersteps. In practice,
there are two flavors of frameworks for developing distributed algorithms: low-level in-
terfaces provided by the message passing interface (MPI)4 with its open-source imple-
mentations Open MPI [89] and MPICH [98], and frameworks providing a more high-

4MPI standard: https://www.mpi-forum.org/docs (last accessed 2020-07-14).

https://www.mpi-forum.org/docs

4 Bingmann et al.

level functionality, e.g., Apache Flink [5], Apache Hadoop (based on MapReduce [54]),
Apache Spark [210], and Thrill [29 SPP].

2.2 Building Blocks

Sorting. Sorting is a fundamental and well-studied topic in computer science, and the
many results fill entire volumes [129,146] of related work. Hence, we will only re-
view recent results for sorting integers in this section, which can be used in various
of the following text indexing algorithms. In applications, sorting is most often still
performed using classic sequential algorithms [107,159], despite existing more cache-
or instruction-efficient variants [180,205,12,65] and well-developed modern parallel al-
gorithms for shared-memory machines such as IPS4o [17], or the sorters in the MC-
STL [188], Intel’s TBB [174], the PBBS [186], ParlayLib [36], or Microsoft’s PPL.
Another method of accelerating sorting is by vectorizing comparisons or operations
using SIMD instructions [87,110,207,41,108,209,35].

For sorting integers, there is also the option of using radix sort algorithms, which
have to be implemented carefully for modern CPUs [152,173,123]. Many parallel radix
sorts for shared-memory machines are also available [192,138,203,165], and are most
prominent on GPUs [181,101,109,154,194].

Sorting of data on external memory is a classic subject [4,58], and implementations
are available in specialized libraries like TPIE [8] or STXXL [57].

An entirely different challenge is sorting on highly-scalable distributed shared-
nothing machines, where load balancing, communication, and data redistribution have
to be devised carefully, as PEs do not share memory. Most distributed memory sort-
ing algorithms are based on either Quicksort [133,1,178,196,16,13] or sample sort
[60,37,106,96,193,14 SPP,15,13].

Sorting is often used as a black box for text indexing algorithms, but depending
on the model, machine, or scenario, large performance gains are possible by picking a
better sorting implementation.

String Sorting. Sorting strings is an interesting special case of sorting, especially
for text indexing algorithms, and most classical sorting algorithms have been adapted
to multi-component objects or multi-key data [26,152,189,162,123,33]. Early paral-
lel algorithms were formulated in the PRAM model and are based on merging of
tries [102,113]. For external memory, theoretical algorithms were proposed, distin-
guishing short and long strings [7], or using hashing [70]. Many well-developed cache-
efficient sequential and shared-memory parallel string sorting algorithms [33,30 SPP,28]
are available in the TLX C++ library5. The fastest sequential ones are engineered vari-
ants of radix sort with very little memory overhead, and the fastest shared-memory
parallel one is a string-aware sample sort implementation. These implementations also
support outputting the lengths of the longest common prefixes (LCPs) of lexicographi-
cally adjacent strings at next to zero extra cost.

5TLX website: https://panthema.net/tlx/ (last accessed 2020-10-18)

https://panthema.net/tlx/

Scalable Text Index Construction 5

While in principle the shared-memory parallel algorithms could be adapted to shared-
nothing distributed supercomputers, they neglect that communication volume is the lim-
iting factor for the scalability of algorithms to large systems [6,39]. The first distributed
string sorting algorithm we developed was a straight-forward adaptation of merge sort
for use in a distributed suffix array construction algorithm [78 SPP]. This first version
still considered strings as unbreakable objects.

Bingmann et al. therefore developed genuine distributed string sorting algorithms
based on multi-way merge sort [34 SPP], which break up the strings into characters. The
strings on each PE are first sorted locally. The PEs then collectively execute a distributed
partitioning algorithm which yields p ranges of equal size with respect to the entire data.
Each range is spread across the p machines in p fragments, and in the next step, each
PE sends its misplaced p− 1 fragments to the corresponding target machine. Finally,
each PE merges the received partition fragments. The appeal of multi-way merging for
communication-efficient sorting is that the local sorting exposes common prefixes of
the local input strings. The Distributed String Merge Sort (MS) exploits this by only
communicating the length of the common prefix with the previous string followed by
the remaining characters. Here, the LCP values also allow us to use the multiway LCP-
merging technique previously developed by Bingmann et al. [30 SPP] in such a way
that characters are only inspected once.

The second algorithm, Distributed Prefix-Doubling String Merge Sort (PDMS), fur-
ther improves communication efficiency by only communicating characters that may be
needed to establish the global ordering of the data (the distinguishing prefix). The al-
gorithm also has optimal local work for a comparison-based string sorting algorithm.
The key idea is to apply the communication-efficient duplicate detection algorithm by
Sansers et al. [179] to geometrically growing prefixes of each string. Once a prefix has
no duplicate anymore, we know that it is sufficient to transmit only this prefix. The same
idea was also used to make any PRAM algorithm LCP-aware [68 SPP].

An experimental evaluation of MS and PDMS (which are implemented in MPI) on
up to 1280 cores shows that these algorithm are often more than five times faster than
previous non-string-aware algorithms. In the future, we hope that these algorithms will
find their way into general purpose distributed toolkits such as Apache Spark [210] or
Thrill [29 SPP].

Further Building Blocks. The prefix sum (w.r.t. a binary associative operator ⊕) of
n elements A[0], . . . ,A[n − 1] is an array B of n elements with B[i] =

⊕i
k=0 A[k] for

i ∈ [0,n). In the PRAM model, the prefix sum of n elements can be computed in O (lgn)
depth and O (n) work [112, p. 47]. Due to their ubiquity, algorithms for prefix sums
are part of frameworks used in different parallel models, e.g., distributed [29 SPP] and
shared memory [188].

Rank and select data structures for a bit vector of length n allow us to compute the
number of set (or unset) bits up to position i ∈ [0,n) (rank), and the position of the j-th
set (or unset) bit for j ∈ [1,n] (select), respectively. They are an important ingredient
of wavelet trees (see Section 3.2). To the best of our knowledge, the only parallel con-
struction algorithms for rank and select data structures are described by Shun [185] and
require O (lgn) depth and O (n/ lgn) work if the n bits are packed into ⌈n/ lgn⌉ words.

6 Bingmann et al.

$ i i i i m p p s s s s
$ p s s i i p i i s s

p s s s $ i p s i i
i i i s $ p s p s
$ p s i i i p s

p s s $ p i i
i i s p $ p
$ p i i p

p p $ i
i p
$ i

$

0 1 2 3 4 5 6 7 8 9 10 11

T m i s s i s s i p p i $

SA 11 10 7 4 1 0 9 8 6 3 5 2

LCP 0 0 1 1 4 0 0 1 0 2 1 3

Fig. 2: Suffix array and longest common prefix array (see Section 3.1) for the text T =
mississippi$. Below, we also show the suffixes in lexicographical order, i.e., the
suffixes represented in the suffix array. There, we also visualize the longest common
prefixes of two lexicographically consecutive suffixes in green ().

In practice, only sequential construction has been considered, e.g., [46,147,211]. How-
ever, the construction of the data structures proposed by Zhou et al. [211] heavily relies
on prefix sums and could thus easily be parallelized.

We can generalize binary rank and select queries for a text T . Then, the function
rankα (T, i) counts, for some character α ∈ Σ and a text position i ∈ [0,n), the number
of occurrences of α in T[0..i], whereas selectα (T,k), for some k > 0, finds the position
of the k-th occurrence of α in T . Generalized rank/select queries can be answered ef-
ficiently using wavelet trees, which reduce them to O (lgσ) binary rank/select queries
(see Section 3.2).

3 Text Indices

A text index provides additional information for a text to speed up answering differ-
ent types of queries. In the following, we give an overview of different construction
algorithms for text indices in the models that we describe in Section 2.1.

3.1 Scalable Suffix Array Construction

One of the best-researched text indices is the suffix array (SA), which has been in-
troduced by Manber and Myers [150] and independently by Gonnet et al. [95] as
the PAT array. The SA of a text T of length n is a permutation of [0,n) such that
T [SA [i],n) < T [SA [j],n) for all 0 ≤ i < j < n, i.e., it lists all suffixes lexicographi-
cally. See Fig. 2 for an example. Suffix arrays are a space efficient replacement of suffix
trees (ST) (see Section 3.3). To obtain the same functionality as the STs, SAs are of-
ten accompanied by additional arrays containing further information. Since suffix array

Scalable Text Index Construction 7

construction algorithms sort all suffixes of a text, we use the term suffix sorting synony-
mously with suffix array construction.

When both the text and the SA fit into memory, the SA can be computed in linear
time using the difference cover algorithm [124]. The idea is to sample suffixes and sort
the samples. Using the sorted samples, we can lexicographically compare two suffixes
in constant time. First, we compute SA12 containing all suffixes starting at positions that
are not a multiple of three, i.e., suffixes starting at positions that are multiples of 1 and
2. To this end, we interpret three characters as one (increasing the alphabet size) and
recursively call this algorithm until all characters are unique. Then, the SA0 of all other
suffixes is computed using the already computed SA12. To obtain the final SA, SA0 and
SA12 are merged. The algorithm described above is called DC3. It can be generalized
to other difference covers modulo X > 3; then we refer to it as DCX. The DCX algo-
rithm can easily be adapted to several models of computation where it also is asymp-
totically optimal [124]. However, it often impractical due to substantial constant factor
overheads, while induced sorting algorithms (Section 3.1) are superior, at least in the
sequential computations. But the latter are hard to parallelize. Closing this gap between
theory and practice is an interesting open problem for algorithm engineering. Note that
all but one [20] sequential linear time suffix sorting algorithms rely on recursion. The
SA can be constructed sequentially with only constant space overhead while retaining
a linear running time [97,141]. For more information on sequential suffix sorting, we
point to two extensive surveys [28,172] and a practical evaluation [19 SPP].

We now give an overview of suffix sorting algorithms in external memory, in shared
memory (briefly touching also GPUs), and in distributed memory. Later, we take a look
at the LCP array, one of the arrays often supplementing the SA.

External Memory. Crauser and Ferragina [52] and Dementiev et al. [56] present EM
prefix doubling algorithms with discarding. The idea of prefix doubling [150] is to
sort all suffixes based on the h-order ≤h, defined by T [i,n) ≤h T [j,n)⇔ T [i, i+ h) ≤
T [j, j+ h) (=h and <h are defined analogously). The h-rank of a suffix is the number
of suffixes that are strictly smaller w.r.t. the h-order. Now, during the k-th iteration, we
compute the 2k-ranks using the 2k−1-ranks: for all suffixes T [i,n), we use the ranks of
T [i, i+2k−1) and T [i+2k−1, i+2k), which are known from the previous iteration. We
stop when ranks are unique; then, each rank is the position of that suffix in the SA. In
practice, we can discard those h-ranks that are unique and not needed to compute other
ranks any more, which can speed up the sorting, as it reduces the number of elements
that we have to sort. For texts with small alphabets, prefix doubling algorithms are in
practice often sped up by alphabet reduction in combination with word packing, e.g.,
[32 SPP,56,78 SPP,81]. Here, an alphabet of size σ is first mapped to [0,σ ′) such that
σ ′ ≤ σ each character of the new alphabet occurs at least once in the text and they retain
their original order. Then, each character is augmented such that it not only stores i, but
also the following ⌊b/ lgσ ′⌋ characters for some suitable bit-width b. This makes sense,
for example, when there are unused bits already reserved in the binary representation
of the characters, as with DNA (σ ′ = 4) stored in bytes (b = 4). This allows prefix dou-
bling algorithms to skip the first ⌊lg(⌊b/ lgσ ′⌋)⌋ iterations. Dementiev et al. [56] also
generalize prefix doubling to α-tupling, i.e., considering αk-ranks during the (k+1)-th

8 Bingmann et al.

iteration and present experimental results for their implementations. Here, EM DC3 is
superior to all prefix doubling/quadrupling (α = 2 and α = 4) algorithms w.r.t. run-
ning time and I/Os. They also show that for small alphabets, DCX can yield further
improvements when using difference covers of size 31.

Induced sorting (see [144] for a detailed overview) is another prominent approach
for EM suffix sorting. It is also used in the fastest sequential main memory suffix sorting
algorithms [19 SPP] that are called SAIS [164] and DivSufSort6. This technique has
also been generalized to compute the SA of collections of strings [145]. The general
idea of all EM induced sorting suffix sorting algorithms is to: (1) classify all suffixes into
two classes, which can be done in a single scan of the text, (2) sort at most n/2 special
suffixes, which are suffixes from one of the classes that are (in text order) next to a suffix
from the other class, and (3) induce the lexicographical order of all other suffixes using
an EM priority queue. The two most prominently used classification schemes are by
Itoh and Tanaka [111] and Nong et al. [164]. All following external memory algorithms
make use of the latter classification scheme.

Bingmann et al. [31] propose eSAIS following the ideas described above. Addition-
ally, eSAIS can also be used to compute the LCP array, which we define later in this
section. Another EM induced sorting algorithm DSAIS is presented by Nong et al. [163].
However, this algorithm assumes that n=O

(
M2/B

)
, which limits the scalability, as the

input size is still bounded by the size of the main memory (it is also not faster in prac-
tice than eSAIS [122]). An improved version DSAIS+ by Wu et al. [206] is reported to
be faster than eSAIS and also requires around half the disk space. Another EM induced
sorting algorithm, called fSAIS, is presented by Kärkkäinen et al. [122]. The fSAIS al-
gorithm introduces multiple improvements compared with eSAIS and DSAIS. First, it
uses the classification by Nong et al. [164] but switches the classes when it comes to
determining the special class, which resolves some corner cases, because now the last
suffix T[n− 1..n) cannot be in the special class. Then, a stable priority queue is used,
making timestamps to keep track of the order of the induced suffices unnecessary (com-
pared to eSAIS) and thus reducing the I/O volume. Finally, to avoid random access on
the text, a simplified blockwise preinducing [163] is used, i.e., the text is split into fixed
sized blocks and the characters in each block are ordered in the same way they are
accessed during the inducing phase. In addition to fewer random access, this makes it
unnecessary to store the text positions from which the suffixes is induced. All these im-
provements halve the I/O volume of the algorithm compared to eSAIS. Han et al. [103]
recently presented nSAIS, which reduces the I/O volume and required disk space even
further.

Another idea for EM suffix sorting is to split the text into consecutive blocks such
that the SA of the block can be computed in main memory. These partial SAs (plus
additional information that helps later on) are then merged to obtain the final SA [117].
This approach can be parallelized [121] in EM.

6Original implementation without publication: https://github.com/y-256/
libdivsufsort (last accessed 2020-10-18). Fischer and Kurpicz give a detailed description
of the algorithm and extend it to also compute the LCP array [77 SPP].

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort

Scalable Text Index Construction 9

Shared Memory and GPGPU. On a PRAM, we are only aware of induced sorting al-
gorithms. Labeit et al. [132] present a parallel implementation of DivSufSort. Lao et al.
present a parallel version of SAIS [136] and SACAK [137], the latter being a simpli-
fied version of SAIS. Both are faster on repetitive texts than the parallel DivSufSort.
An improved parallel SACAK algorithm, by Xie et al. [208], is the fastest algorithm
on most inputs (in their evaluation, the parallel DivSufSort is only faster on two of the
non-repetitive inputs).

Finally, we also want to mention SA construction using graphics cards (general pur-
pose computation on graphics processing unit, GPGPU). Due to the limited amount
of memory available on graphics cards, these algorithms do not scale well. The domi-
nant techniques used in GPGPUs are prefix doubling: either heavily relying on prefix
sums [195] or using radix sort [169,202]. DCX algorithms have been presented by Deo
and Keely [59] and Wang et al. [202] but are outperformed in practice by the prefix
doubling approaches. The latter also present a DCX-prefix-doubling hybrid, which is
the fastest GPGPU suffix sorting algorithm.

Distributed Memory. In distributed memory, suffix sorting becomes harder than in
RAM, as we have to communicate to obtain access to text that is not locally available
on a PE; we want to avoid random access on data that is not local. There exist distributed
suffix sorting algorithms that are based on merge-sort [128], quicksort [161], and radix
sort [2,88]. The DCX algorithm has also been practically evaluated in distributed mem-
ory [32 SPP,131,155].7

In practice, variants of prefix doubling are most often used, with different imple-
mentations of how the new ranks are computed. Kitajima and Navarro [127] presented
an early distributed version of Manber and Myers’s [150] prefix doubling algorithm,
but it requires a lot of bookkeeping. Flick and Aluru’s distributed prefix doubling algo-
rithm [81] makes use of the inverse SA that is partly computed based on the currently
considered h-ranks. A further practical improvement is that the algorithm switches to
a different strategy for refining the ranks for small groups of suffixes with the same
rank; this reduces communication even further. In addition, this algorithm is the only
distributed algorithms that supports the computation of the LCP array. Two distributed
prefix doubling algorithm are presented by Bingmann et al. [32 SPP]. Those algorithms
have been implemented in the Thrill framework [29 SPP], which results in some re-
strictions regarding the access to the distributed data. The first algorithm makes use of a
window of size 2k (in the k-th iteration) to obtain the required rank, whereas the second
one is a prefix doubling with discarding algorithm. This idea was later revisited and
implemented using MPI [78 SPP]. Here, the prefix doubling algorithm and distributed
string sorting (see Section 2.2) are used as building blocks for a distributed induced
sorting suffix sorting algorithm, which is the most memory efficient distributed suffix
sorting algorithms currently available, but only works efficiently for small alphabets
due to a σ2-factor in space and the number of synchronization steps.

7DC3/7/13 implementation without publication is available at https://github.com/
bingmann/pDCX (last accessed 2020-09-25).

https://github.com/bingmann/pDCX
https://github.com/bingmann/pDCX

10 Bingmann et al.

Longest Common Prefix Array. The SA is often accompanied by different arrays
containing useful information to speed up different types of queries. One of the most
important ones is the longest common prefix (LCP) array. It contains the lengths of
the longest common prefixes of lexicographically consecutive suffixes. More formally,
LCP [0] = 0 and LCP [i] =max{ℓ≥ 0: T [SA [i],SA [i]+ℓ)= T [SA [i−1],SA [i−1]+ℓ)},
see Fig. 2. The LCP array can be computed sequentially in linear time [125].

There exist LCP array construction algorithms based on prefix doubling in dis-
tributed memory [81]. In external memory, the LCP array can be constructed while
executing eSAIS [31]. Alternatively, it can be computed after the computation of the
SA [115,116]. This EM computation can also be parallelized [118,119]). In GPGPUs,
there exists a parallel version of Kasai et al.’s [125] algorithm [59]. We refer to [183] for
a extensive evaluation of different shared memory LCP array construction algorithms.
The LCP array construction has also been generalized to collections of strings [67,145].

3.2 Compressed Full-Text Index

In the following, we consider a space-efficient alternative to the SA, the FM-index. We
first look at the construction of its two main building blocks, the Burrows-Wheeler
transform and the wavelet tree, and then how it can be combined to finally obtain the
FM-index.

Burrows-Wheeler Transform. The Burrows-Wheeler transform (BWT) [42] of a text
T of length n is defined by BWT [i] = T [SA [i]−1 mod n]. A different, more verbatim
definition of the BWT is that we sort the strings S0 = T [0] . . .T [n−1],S1 = T [1] . . .
T [n−1]T [0], . . . , Sn−1 = T [n−1]T [0] . . .T [n−2] (the shifts of T) lexicographically.
Then BWT is the last character of each of the shifts, when the shifts are read in lexico-
graphic order. We call this the naive approach. See Fig. 3a for an example of the BWT .
The first definition of the BWT can be translated to a simple construction algorithm
based on the SA—for which we have seen many construction algorithms in different
models of computation in Section 3.1. However, there are many algorithms that do not
require the computation of the SA. In RAM, the best main memory algorithm can com-
pute the BWT in time O

(
n lgσ/

√
lgn

)
for alphabets of size σ ≤

√
lgn [126].

On a PRAM, Hayashi and Taura [104] present a construction algorithm that is based
on the divide-and-conquer paradigm. They first recursively split the text into consecu-
tive slices (until the size of a slice falls below a threshold). After that, partial BWTs
are computed for the slices. These partial BWTs are then merged in parallel. To speed
up merging, additional information, like SA samples and WTs, is used. Liu et al. [143]
present an algorithm that does not merge the partial BWTs directly, but only computes
partial SAs and merges those. However, unlike Hayashi and Taura, they use a single
dedicated PE to merge the partial SAs, which are computed by all other PEs. Again,
additional information, like the LCP array (see Section 3.1), is used. The BWT is then
obtained using the final SA. Fuentes-Sepúlveda et al. [86] present a parallel version of
[157] that considers consecutive slices of size ∆ = ⌈lgσ n⌉ as meta-symbols. The SA
of the concatenation of S1 and S2 (of size 2n/∆) is used to compute a partial BWT .
Then, all other shifts Si (∆ −2 many) are merged (each in parallel) with S1. Additional
information obtained by the merging is used to update the partial BWT .

Scalable Text Index Construction 11

Ohlebusch et al. [167] consider the reverse BWT (BWT rev), i.e., the BWT of the
reverse text T rev = T [n−1]T [n−2] . . .T [0] that is of interest for short read mapping
(cf. Section 4). The sequential version of the algorithm makes use of the wavelet tree
of the BWT of the text, the SA, and the text itself. This leads to independent intervals in
BWT rev that can easily be computed in parallel. Gilchrist and Cuhadar [93] show that
for many applications (cf. Section 4.2), the BWT is only required for slices of the text.
The BWT construction for independent slices of the text is easy to parallelize.

Menon et al. [153] give a distributed BWT construction algorithm based on MapRe-
duce. Another distributed algorithm based on merging is presented by Wang et al. [201].
This algorithm is tuned for large collection of DNA reads and first partitions the text
with respect to a common prefix, and then computing the BWT for partitions with
a common prefix—similar to the domain decomposition for wavelet trees (cf. Sec-
tion 3.2). Ferragina et al. [72] present an EM version of [104] that is based on merging.
Also in EM, prefix free parsing [40,130] is used, which is a technique similar to the
one used for the asymptotically best sequential BWT construction algorithm [126]. The
naive BWT construction has also been parallelized with FPGAs by Trinidad et al. [198].
Here, the disadvantage is that we actually have to store all shifts Si. This approach is
also considered on GPGPUs by Patel et al. [170].

As with SA and the LCP array, the BWT has also been generalized for a collection
of strings and there exist external memory algorithms for its construction [67,145].

Wavelet Trees. For our compressed full-text index, we need to answer generalized
rank and select queries (see Section 2.2) on the BWT efficiently. The wavelet tree (WT),
introduced by Grossi et al. [99], is a binary tree data structure that allows answering
both queries in time O (lgσ) and can be stored in n lgσ + o(n) bits of memory. Each
node of the tree represents an interval [a,b] ⊆ Σ and is labeled by a bit vector that
contains one bit for each text position i, in text order, where T [i] ∈ [a,b]. The bit is set
iff T [i] > ⌊(a+ b)/2⌋. The root node represents the entire alphabet [a,b] = Σ and is
therefore labeled by n bits, corresponding to the entire text T . A node has two children
if |[a,b]| ≥ 2. Then, recursively, the left child represents the interval [a,⌊(a+ b)/2⌋],
and the right child represents [⌊(a+b)/2⌋+1,b]. Finally, the leaves represent intervals
of size one or two. Because the alphabet is split in two halves at every node, the tree
has height ⌈lgσ⌉. Fig. 3b shows an example.

Instead of comparing a character to the interval’s middle to determine its bit in a
node, it is more common to look at the ⌈lgσ⌉ bits of the characters’ binary represen-
tations, starting with the most significant bit. Each bit tells whether to go left (zero)
or right (one), i.e., characters encode a path down the WT starting from the root. In
that regard, different codes can be used. A prominent example for using a code other
than binary is the Huffman-shaped WT , which is constructed based on the characters’
canonical Huffman codes. The bit vectors labelling the nodes then require only as much
space as the Huffman-compressed text.

Apart from text indexing, the WT has applications in more areas, as described in var-
ious surveys on the topic [73,100,149,160]. An alternative representation of the WT—
the wavelet matrix (WM)—introduced by Claude et al. [47], is a more efficient choice
when dealing with large alphabets. It only requires negligible extra space compared

12 Bingmann et al.

0 1 2 3 4 5 6 7 8 9 10 11

T m i s s i s s i p p i $

SA 11 10 7 4 1 0 9 8 6 3 5 2

BWT i p s s m $ p i s s i i

(a) Burrows-Wheeler transform.

ipssm$pissii
001100001100

ipm$piii
01101000

i$iii
10111

pmp
101

ssss
0000

(b) Wavelet Tree.

α code

$ 000
i 001
m 010
p 011
s 100

(c) Binary
representa-
tion.

Fig. 2: Burrows-Wheeler transform of the text T = mississippi$ in (a). In (b), we
show the wavelet tree (assuming σ = 8) of the Burrows-Wheeler transform depicted in
(a). The binary representation of the characters is given in (c). Together, the Burrows-
Wheeler transform and the wavelet tree are the FM-index, which we briefly describe in
Section 3.2.

to the WT and can be used to answer the same queries in the same asymptotic time.
However, when answering queries, fewer constant-time binary rank queries are needed
on the bit vectors than in the WT , making it faster in practice. The similarities and
differences between WT and WM are studied in more in detail by Dinklage [61]. The
remainder of this section focuses on algorithms to construct the WT in the computa-
tional models introduced in Section 2.1. We will refer to levels of the WT , where level
ℓ describes the set of nodes with depth ℓ.

We first consider sequential construction algorithms. There are various improve-
ments to naı̈ve algorithms to construct the WT: Claude et al. [48] and Tischler [197]
give the most space-efficient algorithms using only O (lgn) bits, but do not provide a
competitive implementation. Da Fonseca and da Silva [84] give an online construction
algorithm, i.e., one where no prior knowledge of the input alphabet is required, that
runs in time O (n lgσ) and uses n⌈lgσ⌉+ o(n lgσ) bits of space. The fastest known
algorithms in theory require time O

(
n lgσ/

√
lgn

)
and were given by Babenko et al.

[18] and Munro et al. [158]. The latter was implemented by Kaneta [114], proving that
the use of modern CPU instructions can reflect theoretical improvements also in prac-
tice. Kaneta’s results are competitive with the currently known fastest and most space-
efficient algorithm to construct the WT , which has been developed by Fischer et al.
[79 SPP]: it is based on prefix counting and, except for the topmost level, constructs
the WT bottom-up as described in the following. In a first scan of T , we compute the

Scalable Text Index Construction 13

histogram of T , i.e., the frequencies of all characters, as well as the topmost level of the
WT , which consists of the characters’ most significant bits in the same order in which
they occur in T . For each remaining level ℓ ∈ [2,⌈lgσ⌉), starting with the bottommost
level, we first compute the histogram of T . This is done by combining the frequencies
of every pair in the previous histogram: because a node combines the two intervals of
the alphabet represented by its children, the total frequency of its represented characters
is the sum of the respective frequencies of its children. The histogram for level ℓ allows
us to easily compute the positions of the first bit for every node on level ℓ. In one scan
of T , we can then compute the bits for all nodes on level ℓ and directly write them to
the correct positions. The algorithm requires total time O (n lgσ) and σ⌈lgn⌉ bits of
space in addition to the input and output. The same technique can be used to construct
the Huffman-shaped WT , where it also yields the best practical results in terms of speed
and space usage.

We now regard the parallel WT construction in the shared memory model. Labeit et al.
[132] gave a recursive algorithm based on the parallel split operation. Here, the avail-
able PEs process T in parallel to compute the bits for the root node. These bits are then
used to perform a parallel split of T for the left and right child, which are recursively
processed in parallel. The number of PEs used to process each child is proportional
to the sizes of the children. Two further techniques for parallel WT construction stand
out: domain decomposition and an algorithm based on sorting. The use of domain de-
composition for WT construction has first been proposed by Sepúlveda et al. [85]. The
input T is partitioned such that every PE receives a slice of size n/p. and computes the
entire WT for its slice using any sequential algorithm, e.g., prefix counting. In a subse-
quent step, these WT are merged into the WT for T , which can be done efficiently by
concatenating the bit vectors contained in the corresponding nodes. Because an arbi-
trary sequential construction algorithm can be used locally, domain decomposition can
be tuned to have a very low memory footprint. The algorithm based on sorting, first
proposed by Shun [184], constructs the WT top-down, level by level, and makes use of
stable integer sorters, which are well studied for all practically relevant computational
models. The bits of the topmost level can be computed in an initial parallel scan of T ,
similar to the (sequential) prefix counting algorithm. Then, before proceeding to some
level ℓ > 1, the text is reordered by stably sorting the characters according to their ℓ-bit
prefixes, which puts them in the correct positions to compute that level’s bit vector in
a parallel scan of the reordered text. To that end, the algorithm only requires ⌈lgσ⌉
parallel scans of T . For both algorithms, Shun presents techniques that allow for dif-
ferent trade-offs between work and time [185]. The best known implementations were
given by Fischer et al. [79 SPP], concluding that domain decomposition is the fastest
approach in practice, also for constructing the Huffman-shaped WT .

The parallel construction in distributed memory has been studied by Dinklage et al.
[64 SPP], confirming the practical relevance of domain decomposition, which yields the
fastest running times and best memory efficiency in practice. An important measure for
distributed memory algorithms is the communication volume. During the distributed
domain decomposition, only the merging phase requires communication between the
PEs. They also adapted Shun’s parallel sorting algorithm [184] to distributed memory
and achieved nearly as good running times, albeit requiring more communication. Be-

14 Bingmann et al.

cause the individually constructed levels need not be partitioned into nodes, the sorting
algorithm has furthermore been found to be better suited than domain decomposition
for constructing the WT for large alphabets.

Finally, we look at WT construction in external memory. Ellert and Kurpicz [69 SPP]
present sequential and parallel external memory algorithms. The sequential algorithm
is based on sorting and works similar to the corresponding parallel algorithm. Using
only a constant amount of main memory, it requires two scans of T for each level of
the WT . They also provide various semi-external algorithms with similar properties, all
of which outperform the semi-external WT construction algorithms from the Succinct
Data Structure Library (SDSL) [94]. Finally, their parallel algorithm makes use of do-
main decomposition to distribute work on the available PEs, each PE using a sequential
in-memory algorithm (e.g., prefix counting) to construct a partial WT . Because the p
parts of T may not fit into main memory, each PE furthermore partitions its part into
segments of size k such that a segment and its WT does fit in main memory. They then
process their part segment by segment. The algorithm requires four scans over T for
each level, plus σ random I/O operations for each segment. Naturally, because of the
necessary synchronizations with external memory, the algorithm only scales well up to
a limited number of PEs. Yet, the parallelization achieves a notable speedup in practice.

FM-Index. The FM-index [74] combines the BWT and (Huffman shaped) WTs to a
compressed full-text index. It is widely used, in particular in most DNA read aligners
[134] and in Bioinformatics in general (cf. Section 4.1).

To locate a pattern using the FM-index, a backward search is performed. Using the
C array (for each α ∈ Σ , C[α] is the overall number of occurrences of characters in
BWT that are strictly smaller than α , i.e., the rank of α in Σ) and the WT of the BWT
to answer rankα (i) (on the BWT , cf. Fig. 2) it is possible to search backwards for a
pattern in T [74]: Given an ω-interval [i, j] (i.e., ω is a prefix of T[SA [k]..n) if and
only if i ≤ k ≤ j) and α ∈ Σ , the procedure called backwardSearch(α, [i, j]) returns the
αω-interval [lb,rb], where lb =C[α]+ rankα (i)+1 and rb =C[α]+ rankα (j+1). If
lb > rb, the pattern does not occur in T .

Note that any combination of BWT and WT construction algorithms can be com-
bined to compute the FM-index (in any model of computation). Still, there exist ded-
icated practical PRAM FM-index construction algorithms by Labeit et al. [132] and
Lio et al. [143]. The former combines their parallel SA (see Section 3.1) and WT (see
Section 3.2) construction algorithms to compute an FM-index (in parallel), whereas the
latter provides a parallel algorithm that computes both the BWT and the FM-index.

3.3 Suffix Trees

A suffix tree (ST) for a string of length n is a compact trie storing all the suffixes of
T , i.e., the concatenation of the edge labels on the path from the root to leaf i exactly
spells out the suffix T[i..n); see Fig. 3a for an example. Weiner [204] showed that it can
be constructed in linear time provided that the underlying alphabet has constant size.
Farach-Colton et al. [71] gave the first suffix tree construction algorithm that is optimal

Scalable Text Index Construction 15

for all alphabets. It has linear run-time for alphabets consisting of integers in a poly-
nomial range. The ST is one of the most powerful data structures in string processing,
with applications in fields like bioinformatics or information retrieval, e.g., [21,45].

Abouelhoda et al. [3] showed that there is a one-to-one correspondence between the
set of all lcp-intervals and the set of all internal nodes of the ST of T . Let us define the
concept of lcp-intervals (see Fig. 3a). An interval [i, j] in the LCP array—for simplicity,
we now assume that LCP [0] =−1 = LCP [n]—is called an lcp-interval of lcp-value ℓ if
(1) LCP [i]< ℓ, (2) LCP [k]≥ ℓ for all k with i < k ≤ j, (3) LCP [k] = ℓ for at least one
k with i < k ≤ j, and (4) LCP [j+1]< ℓ. Every index k (i < k ≤ j) with LCP [k] = ℓ is
called ℓ-index or lcp-index. A leaf in the ST corresponds to a singleton interval [k,k].
The parent interval of an lcp-interval [i, j] (or a singleton interval) is the smallest lcp-
interval that contains [i, j] but does not coincide with [i, j].

The drawback of STs is their huge space consumption: even carefully engineered
implementations require 8–20 bytes per input character. It is possible to save a lot of
space by representing the ST topology by a sequence of balanced parentheses. The
sequence BPS, for instance, can be constructed by a depth first search traversal of the
(uncompressed) ST as follows. At each node v (starting at the root), write an opening
parenthesis, recursively process the child nodes of v, and write a closing parenthesis
afterwards (see Fig. 3b). Since the ST has n leaves and up to n− 1 internal nodes, the
BPS needs up to 4n− 2 bits. Based on the BPS, all navigational operations on the ST
can be supported with data structures that require only o(n) bits [177].

The BPS can be constructed in parallel on a shared memory architecture in the
CRCW PRAM model with the help of the LCP array as follows; see [22] for de-
tails, where also the necessary adjustments for the CREW model are explained. Create
two arrays Co and Cc of size n, enumerate all lcp-intervals in parallel, and increment
Co[i] and Cc[j] for each lcp-interval [i, j]. After that, compute the prefix sum PS of
sum[i+1] =Co[i]+Cc[i], and write Co[i] opening followed by Cc[i] closing parenthesis
at position PS[i] into the bitvector BPS (in parallel). It is possible to enumerate all lcp-
intervals (in parallel) with the help of the arrays PSV (previous smaller value) and NSV
(next smaller value), which are defined as follows:

PSV [i] = max{ j | 0 ≤ j < i and LCP [j]< LCP [i]}
NSV [i] = min{ j | i < j ≤ n and LCP [j]< LCP [i]}

Table 1 shows an example (an entry ⊥ means that the value is undefined). The key obser-
vation is that for any index i with 0< i< n and LCP [i] = ℓ the interval [PSV [i],NSV [i]−
1] is an lcp-interval of lcp-value ℓ and i is one of its lcp-indices; for a proof see, e.g.,
[166, Lemma 4.3.8]. A problem of this approach is that an lcp-interval with multiple
ℓ-indices will occur more than once in the enumeration. To overcome this problem,
such an interval is reported if and only if i is the first (leftmost) ℓ-index of the inter-
val. To this end, previous smaller values (PSV) are replaced with previous smaller or
equal values (PSEV), where the array PSEV is defined by PSEV [i] = max{ j | 0 ≤ j <
i and LCP [j] ≤ LCP [i]}. Then [PSV [i],NSV [i]− 1] appears in the enumeration if and
only if LCP [i] ̸= LCP [PSEV [i]].

The problem of computing previous smaller and next smaller values, also known as
the all-nearest-smaller-value problem (ANSV), was already solved by Berkman et al.

16 Bingmann et al.

1-[0,0]

2-[1,1]

5-[2,2]

8-[3,3]

11-[4,4]

12-[5,5]

3-[6,6]

4-[7,7]

6-[8,8]

9-[9,19]

7-[10,10]

10-[11,11]

11

10

7

4

1

0

9

8

6

3

5

2

0-[0,11]

1-[1,4]

4-[3,4]

1-[6,7] 1-[8,11]

2-[8,9]

3-[10,11]

$ i

$ p

p

i

$

s

s

i

p

p

i

$

s

s

i

p

p

i

$

m

i

s

s

i

s

s

i

p

p

i

$

p

i

$

p

i

$

s

i

p

p

i

$

s

s

i

p

p

i

$

s

i

p

p

i

$

s

s

i

p

p

i

$

(a) Suffix tree.

(
0

(
1

)
2

(
3

(
4

)
5

(
6

)
7

(
8

(
9

)
10

(
11

)
12

)
13

)
14

(
15

)
16

(
17

(
18

)
19

(
20

)
21

)
22

(
23

(
24

(
25

)
26

(
27

)
28

)
29

(
30

(
31

)
32

(
33

)
34

)
35

)
36

)
37

11 10 7 4 1 0 9 8 6 3 5 2

(b) BPS of the suffix tree.

Fig. 3: In (a), the suffix tree for T = mississippi$ (an annotation ℓ-[i, j] within a
node shows the corresponding lcp-interval, i.e., ℓ is the string-depth of the node and [i, j]
is the corresponding interval). The number below the leafs is the starting position of the
corresponding suffix. For the corresponding SA and LCP array see Fig. 2. The BPS
of the suffix tree is shown in (b). Matching parentheses are connected by dotted lines.
A leaf in the suffix tree is represented by an opening parenthesis that is immediately
followed by a closing parenthesis; its leaf number (leaf i represents suffix T[i..n)) is
depicted above the two parentheses. The last row shows the positions of the parentheses
in the BPS.

[27] with O (n) work and in O (log logn) time using O (n/ log logn) processors on a
CRCW PRAM.

In the following, we will focus on distributed memory. He and Huang [105] pre-
sented a bulk-synchronous parallel adaption of the algorithm invented by Berkman et al.
[27]. Flick and Aluru [82] improved their work in various directions by introducing a
generalized version of the ANSV problem. They showed how to handle duplicate val-

Scalable Text Index Construction 17

Table 1: The LCP array with LCP [0] = −1 = LCP [n] for T = mississippi$ (cf.
LCP array in Fig. 2) and the corresponding arrays NSV , PSV , PSEV , and PFE.

0 1 2 3 4 5 6 7 8 9 10 11 12

LCP −1 0 1 1 4 0 0 1 0 2 1 3 −1

NSV ⊥ 12 5 5 5 12 12 8 12 10 12 12 ⊥

PSV ⊥ 0 1 1 3 0 0 6 0 8 8 10 ⊥

PSEV ⊥ 0 1 2 3 1 5 6 6 8 8 10 ⊥

PFE ⊥ ⊥ 1 2 2 1 1 1 1 1 1 10 ⊥

ues, generalized the communication structure, and provided novel proofs. Based on the
improvements on the ANSV problem, they presented a parallel ST construction algo-
rithm using the suffix- and LCP array that runs in O (n/p+ p) time, which is work
optimal for p = O (

√
n). In a first phase, they represent the ST as an array E of edges

(i, parent(i)). This approach requires a unique representative index for each node v in
the ST . Since v corresponds to an lcp-interval, one can choose the first (leftmost) lcp-
index of that lcp-interval as a representative. Moreover, Lemma 1 shows that the rep-
resentative of the parent interval can be computed with the help of “previous-furthest-
equal” values, defined for all i with 1 < i < n as follows:

PFE [i] = min{ j | PSV [k]< j < i and LCP [j] = LCP [k], where k = PSEV [LCP [i]]}

Lemma 1. Recall that, for any index i with 1 < i < n, the interval [lb,rb], where lb =
PSV [i] and rb = NSV [i]− 1], is an lcp-interval and i is an lcp-index of [lb,rb]. In the
following, let m = PFE [i]. If LCP [m] = LCP [i], then m is the representative lcp-index
and i is a different lcp-index of [lb,rb]. From now on we assume LCP [m] < LCP [i].
In this case, we have LCP [m] = LCP [PSV [i]]. If LCP [PSV [i]] < LCP [NSV [i]], then
NSV [i] is the representative lcp-index of the parent interval of [lb,rb]; see [166, Lemma
4.3.9]. Otherwise, PSV [i] is an lcp-index of the parent interval of [lb,rb] and m is the
representative lcp-index of that parent.

Flick and Aluru’s algorithm assumes that all inputs are distributed equally across
processors with n/p elements per process. It computes PFE and NSV in O (n/p+ p)
time. Since the processor for the range [n

p j, n
p (j+1)−1] has the corresponding portions

of LCP, PFE, and NSV in local memory, it can compute edges (i, parent(i)) in its range
based on Lemma 1. The parents of leaf nodes in its range can be computed similarly;
see [82] for details. In the second phase of their algorithm, Flick and Aluru show how
edges can be inverted (and analyse the communication complexity). This is because
for pattern matching applications, instead of having parent pointers, each internal node
should point to its children. Other algorithms for distributed ST include [44,50,212].

3.4 Query Answering

Up to this point, we only have considered the construction of different full-text indices.
Since all full-text indices that we have looked at have their origin in RAM, they can

18 Bingmann et al.

easily be used there by allocating the incoming queries in a round robin fashion to
the PEs. However, in external or distributed memory, the obstacle is that neither the
whole text nor the whole index can be accessed in a random access manner, as in the
construction algorithms. In this section, we take a look at different approaches to answer
queries in such a setting.

Clifford [49] show how to use a suffix tree in distributed memory to answer different
types of queries. They build the suffix tree using Ukkonen’s algorithm [199]. For this
purpose, the whole text is required at each PE, limiting the scalability of this approach
significantly.

Mäkinen et al. [148] use the compressed suffix array (CSA) [176] in distributed and
external memory. The CSA requires roughly the same space as the compressed text but
also does not need the text to answer queries (unlike the SA); it is a self-index. In main
memory, queries of length m can be answered in O (m lgn) time. They improve query
times by sampling ℓ-length strings instead of characters and encoding the supporting
data structures using Elias delta encoding in combination with lookup tables. This allow
for constant time access to the supporting data structures (not queries). In EM, their
approach can search for a pattern of length m in O (m lgB n) I/Os (which can be reduced
to O ((m lgn)/B) if O (n) bits can be stored in main memory). In distributed memory, m
supersteps are required to answer such a query. During each superstep only a constant
number of words have to be communicated and O (lgn) local work is required.

Arroyuelo et al. [10] compare different layouts of the SA for pattern matching in
distributed memory. When each PE holds a consecutive slice of the SA, we have the
global layout. In addition to the SA, pruned suffixes are stored to speed-up querying at
the local PE. To speed up queries, a trie for the suffixes at the beginning and end of
each slice is built at each PE in order to distribute queries to the PE that can answer it
locally. Next, in the local layout, each PE holds a consecutive slice of the text and builds
a SA only for this local slice. Here, each PE must answer the query locally and return
the result, requiring only a constant number of supersteps but significant local work (as
all PEs always have to search for the query). The multiplex layout is an intermingled
global layout, where the i-th entry of the global SA is stored at PE i mod p in consec-
utive fashion, i.e., the i-th and (i+ p)-th entry are stored consecutively at the same PE.
Corresponding pruned suffixes are stored as in the global layout. The multiplex layout
(and in some cases the global layout) is the most efficient one in their experiments. They
also propose two additional layouts that, however, perform not as well in practice.

The global layout is extended by Fischer et al. [80 SPP]. Instead of answering the
query directly on the SA, a Patricia trie [156] is constructed for each local slice. To this
end, the LCP array (see Section 3.1) is required. Furthermore, a global trie is used to
distribute the query to the corresponding PE. These two tries together allow queries to
be answered with a constant number of supersteps.

Flick and Aluru [83] further improve the above two-level designs by developing the
distributed enhanced SA (DESA). One improvement of DESA is to eliminate the ex-
plicitly stored tree structure of the two-level indices. Also, the DESA does not partition
the text into consecutive slices of the same size (where queries may have to be answered
on multiple PEs) but partitions the text into more fine grained intervals, such that all in-
tervals can be processed on a single PE. This approach currently scales best in practice.

Scalable Text Index Construction 19

The local search is an adapted version of Fischer and Heun’s [75] query algorithm for
enhanced SAs [3]. Hence, they only need the SA, LCP array, range minimum queries
(RMQs, returning the positions of the smallest element in a given range), and some
additional information. To help load balancing queries, the top level trie is dynamically
(based in the input) constructed such that each bottom level index, corresponding to a
leaf in the top level trie, covers intervals of size n/cp for a constant c. To this end, the
ANSV problem (cf. Section 3.3) is solved. This approach is significantly better than a
static top level lookup table and overall the best in practice.

4 Applications

All previously described text indices have more applications than (exact) pattern match-
ing. They can also be used to answer approximate queries, i.e., when allowing differ-
ences between the pattern and the matched positions. Pockrandt [171] shows how to
transform those queries into exact queries. This is also used in practice in the SeqAn
library [175], which contains efficient algorithms and data structures for the analysis of
biological data (and strings in general). Furthermore, they can be used to compute suc-
cinct de Bruijn graphs, all pairs suffix–prefix overlaps, and maximal repeats [67]. In the
following, we take a more detailed look into two fields where text indices are of great
importance—Bioinformatics (Section 4.1) and lossless compression (Section 4.2).

4.1 Bioinformatics

The most successful application of index structures in bioinformatics is backward search
based on an FM-index [74] (e.g., in form of the WT of the BWT of the input string [99],
cf. Section 3.2). For information on k-mer-based tools, we refer to the recent survey by
Marchet et al. [151].

The most important application of backward search in bioinformatics is read map-
ping. Ultra-high-throughput next-generation sequencing technologies (NGS) have been
commercially available since 2005. In NGS, DNA is fragmented into small pieces, of
which the first few bases are sequenced, yielding several millions of short “reads”, each
30 to 400 base pairs (“DNA characters”) long. The read mapping task is now to align
these reads to a reference genome, i.e., to the known, nearly complete chromosomal
DNA sequences of the organism in question (which may be up to several billion base
pairs long); see [43] for an overview article.

Short read mappers like Bowtie [135] or BWA [140] must be able to deal with
(sequencing) errors. Inexact matching is either based on recursive algorithms that use
backtracking or on the seed-and-extend strategy (exact matches are used as seeds and
the shared seeds are then extended into longer, inexact alignments). The same approach
has also been successfully applied in genome assembly [187] (sequence assembly refers
to aligning and merging reads in order to reconstruct the original sequence). Here, the
fastest implementations only utilize a few threads [24]. Those read mappers usually do
not use parallel construction algorithms, as the reference sequences are short, allowing
a space-efficient sequential algorithm to compute the index in less than an hour.

20 Bingmann et al.

Alignments of longer sequences (ranging from long read mapping to whole genome
alignment) are also obtained by exact matching and the seed-and-extend method. One
of the earliest tools in comparative genomics is based on suffix trees (and later on suf-
fix arrays) [55], but there are also tools using the BWT [142]. The major principle of
comparative genomics is that common features of two organisms will often be encoded
within the DNA that is evolutionarily conserved between them. Therefore, comparative
genomic approaches start with making some form of alignment of genome sequences.
Then, they look for orthologous sequences (sequences that share a common ancestry)
in the aligned genomes and check to what extent those sequences are conserved. Nowa-
days, one tries to take multiple genomes simultaneously into account; see [51] for an
overview of pangenomics. When it comes to the alignment of longer sequences, scaling
algorithms are used, e.g., multithreaded semi-external prefix-doubling algorithms [190]
or building multiple partial indices (in parallel) and merging them [191]. Compressed
suffix trees and FM-indices have been used in indexing variation graphs [92] and for
graphical pangenome analysis [21]. In particular, the balanced parentheses sequence
BPS from Section 3.3 was used for indexing variation graphs [190] (using the algo-
rithm described in [168]). Using a dynamic FM-index, sequences can be inserted in
batches, which can easily be parallelized [139].

4.2 Compression

Text indices have been successfully applied to text compression, most notably to com-
pressors based on the BWT (see Section 3.2) and on different variants of the Lempel-Ziv
parsing of the text. Intuitively, this link between indexing and compression seems plau-
sible, as in both cases one tries to ‘group’ similar substrings; in the former for listing
occurrences, in the latter for exploiting the repetitiveness to somehow save space. We
only consider compressors that operate over the full text (not restricted to small sliding
windows/blocks); this is important for highly repetitive texts such as DNA collections
of individuals from the same species.

Lempel-Ziv in External Memory. The LZ77-factorization [213] of a text T is defined
as follows: suppose T[0..i) has already been parsed into LZ77-phrases. Then the next
LZ77-phrase is the longest prefix of T[i..n) that has an occurrence in T starting strictly
before i (but possibly ending in T[i..n)), or a single character if T [i] does not occur
before. Given a text index on T , this prefix can be located by iteratively querying for
T[i..i+ 1), T[i..i+ 2), . . . , as long as an occurrence starting before i exists. In main
memory, Fischer et al. [76] have the most space efficient implementation of this idea
using compressed variants of the suffix tree, needing only (1+ ε)n logn+O (n) bits
of space and running in O (n/ε) time. The difficulty in EM is, of course, that such re-
peated querying causes too many I/Os. Kärkkäinen et al. [120] avoid this in two ways:
in their EM-LPF algorithm, they first compute the array of longest previous factors in
EM, from which the LZ77 factorization is easily obtained in total sort(n) I/Os. Their
second algorithms, EM-LZScan, divides T into blocks of size Θ (M) and then computes
matching statistics [166, Sect. 5.5.4] of the current block w.r.t. the prefix of T up to the
current block. EM-LZScan needs O

(
n2 logσ

BM logn

)
I/Os in theory, but is significantly faster

Scalable Text Index Construction 21

in practice than EM-LPF for highly repetitive texts. A different approach was taken by
Dinklage et al. [62 SPP], who show that the flexibility of allowing factor occurrences
also be to the right of their starting position (so-called bidirectional parsings) leads to
a much better throughput than EM-LZScan, while achieving similar compression rates.
Their algorithm plcpcomp has been successfully applied to texts of size 128 GiB on a
machine with just 16 GiB of RAM. Considering decompression, Belazzougui et al. [25]
show the I/O-complexity to be sort(n/ logσ n) I/Os and also give a practical implemen-
tation; however, this algorithm cannot be applied to the bidirectional variant, which is
much slower at decompression. Other variants of LZ exist, but have so far not been suc-
cessfully applied to large datasets, although promising approaches exist for LZ78 that
might lead to semi-external solutions [11].

Parallel Burrows-Wheeler-Based Compression. In Section 3.2, we already men-
tioned the relevant literature for computing the BWT L. This output can be postpro-
cessed to compute a compressed version of T , as characters following a similar preced-
ing context are grouped in L. The postprocessing consists of computing the move-to-
front numbers when processing L from left to right, followed by a Huffman encoding of
the resulting numbers. On the PRAM, Edwards and Vishkin [66] show how to perform
those latter steps in O (logn) parallel time and O (n) work, and report good speedups
on FPGA-hardware over popular tools such as bzip2, although only using moderately-
sized inputs. They also show how to decompress the resulting file within the same
complexities. At their core, the algorithms are reduced to the building blocks prefix
sums (cf. Section 2.2) and list ranking. Geared more towards practice, Patel et al. [170]
have similar ideas and show GPGPU implementations; however, they use mergesort for
computing the BWT and report this as their main bottleneck.

We are not aware of any algorithms in external or distributed memory implementing
the full BWT compression pipeline, despite that algorithms for computing the BWT
exist in these models of computation (see Section 3.2).

5 Conclusion and Future Work

Advanced text index data structures such as suffix trees, suffix arrays and wavelet trees
are key to handling large data sets in a range of important applications. A combination
of parallel, external, and compressed implementations can approach the requirements
for handling the exploding amounts of available data.

In this short survey, we have discussed a number of techniques for building and us-
ing such data structures. Our impression is that memory hierarchies and compression by
themselves are fairly well understood by now. A range of parallelization approaches are
known but they suffer from a tradeoff between asymptotic scalability and efficiency.
In particular, the most efficient sequential and external techniques are inherently se-
quential. Hence, a number of important open problems remain. These involve highly
scalable techniques with good constant factors (e.g., for constructing suffix arrays and
LCP arrays with linear work) as well as integration of parallelism, memory hierarchies,
compression and applications. Another interesting research direction is to engineer re-
cent text indices for highly repetitive data [91] for handling large texts. In principle,

22 Bingmann et al.

big data frameworks such as Thrill [29 SPP] can handle parallelization and memory
hierarchies automatically but the question remains whether the involved overheads are
acceptable.

Acknowledgements. This preprint has not undergone peer review (when applicable)
or any post-submission improvements or corrections.

References

1. Abali, B., Özgüner, F., Bataineh, A.: Balanced parallel sort on hypercube
multiprocessors. IEEE Trans. Parallel Distrib. Syst. 4(5), 572–581 (1993).
https://doi.org/10.1109/71.224220

2. Abdelhadi, A., Kandil, A.H., Abouelhoda, M.: Cloud-based parallel suf-
fix array construction based on MPI. In: MECBME. pp. 334–337 (2014).
https://doi.org/10.1109/MECBME.2014.6783271

3. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suf-
fix arrays. J. Discrete Algorithms 2(1), 53–86 (2004). https://doi.org/10.1016/S1570-
8667(03)00065-0

4. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Commun. ACM 31(9), 1116–1127 (1988). https://doi.org/10.1145/48529.48535

5. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F., Heise, A., Kao, O., Le-
ich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J., Schel-
ter, S., Höger, M., Tzoumas, K., Warneke, D.: The stratosphere platform for big data
analytics. VLDB J. 23(6), 939–964 (2014). https://doi.org/10.1007/s00778-014-0357-y

6. Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elnohazy, E., Hall,
M., Harrison, R., Harrod, W., Hill, K., et al.: Exascale software study: Software chal-
lenges in extreme scale systems. DARPA IPTO, Air Force Research Labs, Tech. Rep pp.
1–153 (2009)

7. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings in ex-
ternal memory (extended abstract). In: STOC. pp. 540–548. ACM (1997).
https://doi.org/10.1145/258533.258647

8. Arge, L., Procopiuc, O., Vitter, J.S.: Implementing i/o-efficient data structures using
TPIE. In: ESA. pp. 88–100. Springer (2002). https://doi.org/10.1007/3-540-45749-6 12

9. Arge, L., Rav, M., Svendsen, S.C., Truelsen, J.: External memory pipelining
made easy with TPIE. In: BigData. pp. 319–324. IEEE Computer Society (2017).
https://doi.org/10.1109/BigData.2017.8257940

10. Arroyuelo, D., Bonacic, C., Costa, V.G., Marı́n, M., Navarro, G.: Distributed
text search using suffix arrays. Parallel Comput. 40(9), 471–495 (2014).
https://doi.org/10.1016/j.parco.2014.06.007

11. Arroyuelo, D., Cánovas, R., Navarro, G., Raman, R.: LZ78 compression in low main
memory space. In: SPIRE. pp. 38–50. Springer (2017). https://doi.org/10.1007/978-3-
319-67428-5 4

12. Aumüller, M., Dietzfelbinger, M.: Optimal partitioning for dual-pivot quicksort. ACM
Trans. Algorithms 12(2), 18:1–18:36 (2016). https://doi.org/10.1145/2743020

13. Axtmann, M.: Robust Scalable Sorting. Ph.D. thesis, Karlsruhe Institute of Technology,
Germany (2021). https://doi.org/10.5445/IR/1000136621

14 SPP. Axtmann, M., Bingmann, T., Sanders, P., Schulz, C.: Practical massively parallel sorting.
In: SPAA. pp. 13–23. ACM (2015). https://doi.org/10.1145/2755573.2755595

https://doi.org/10.1109/71.224220
https://doi.org/10.1109/MECBME.2014.6783271
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.1145/258533.258647
https://doi.org/10.1007/3-540-45749-6_12
https://doi.org/10.1109/BigData.2017.8257940
https://doi.org/10.1016/j.parco.2014.06.007
https://doi.org/10.1007/978-3-319-67428-5_4
https://doi.org/10.1007/978-3-319-67428-5_4
https://doi.org/10.1145/2743020
https://doi.org/10.5445/IR/1000136621
https://doi.org/10.1145/2755573.2755595

Scalable Text Index Construction 23

15. Axtmann, M., Sanders, P.: Robust massively parallel sorting. In: ALENEX. pp. 83–97.
SIAM (2017). https://doi.org/10.1137/1.9781611974768.7

16. Axtmann, M., Wiebigke, A., Sanders, P.: Lightweight MPI communicators with applica-
tions to perfectly balanced quicksort. In: IPDPS. pp. 254–265. IEEE Computer Society
(2018). https://doi.org/10.1109/IPDPS.2018.00035

17. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: Engineering in-place (shared-
memory) sorting algorithms. ACM Trans. Parallel Comput. 9(1), 2:1–2:62 (2022).
https://doi.org/10.1145/3505286

18. Babenko, M.A., Gawrychowski, P., Kociumaka, T., Starikovskaya, T.:
Wavelet trees meet suffix trees. In: SODA. pp. 572–591. SIAM (2015).
https://doi.org/10.1137/1.9781611973730.39

19 SPP. Bahne, J., Bertram, N., Böcker, M., Bode, J., Fischer, J., Foot, H., Grieskamp, F.,
Kurpicz, F., Löbel, M., Magiera, O., Pink, R., Piper, D., Poeplau, C.: Sacabench:
Benchmarking suffix array construction. In: SPIRE. pp. 407–416. Springer (2019).
https://doi.org/10.1007/978-3-030-32686-9 29

20. Baier, U.: Linear-time suffix sorting - A new approach for suffix array construction.
In: CPM. pp. 23:1–23:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.CPM.2016.23

21. Baier, U., Beller, T., Ohlebusch, E.: Graphical pan-genome analysis with compressed
suffix trees and the Burrows-Wheeler transform. Bioinform. 32(4), 497–504 (2016).
https://doi.org/10.1093/bioinformatics/btv603

22. Baier, U., Beller, T., Ohlebusch, E.: Space-efficient parallel construction of suc-
cinct representations of suffix tree topologies. ACM J. Exp. Algorithmics 22 (2017).
https://doi.org/10.1145/3035540

23. Barsky, M., Stege, U., Thomo, A.: A survey of practical algorithms for suffix
tree construction in external memory. Softw. Pract. Exp. 40(11), 965–988 (2010).
https://doi.org/10.1002/spe.960

24. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and in-
verting the BWT of string collections. Theor. Comput. Sci. 483, 134–148 (2013).
https://doi.org/10.1016/j.tcs.2012.02.002

25. Belazzougui, D., Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-ziv decoding in ex-
ternal memory. In: SEA. pp. 63–74. Springer (2016). https://doi.org/10.1007/978-3-319-
38851-9 5

26. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
SODA. pp. 360–369. ACM/SIAM (1997)

27. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370 (1993).
https://doi.org/10.1006/jagm.1993.1018

28. Bingmann, T.: Scalable String and Suffix Sorting: Algorithms, Techniques,
and Tools. Ph.D. thesis, Karlsruhe Institute of Technology, Germany (2018).
https://doi.org/10.5445/IR/1000085031

29 SPP. Bingmann, T., Axtmann, M., Jöbstl, E., Lamm, S., Nguyen, H.C., Noe, A., Schlag, S.,
Stumpp, M., Sturm, T., Sanders, P.: Thrill: High-performance algorithmic distributed
batch data processing with C++. In: BigData. pp. 172–183. IEEE Computer Society
(2016). https://doi.org/10.1109/BigData.2016.7840603

30 SPP. Bingmann, T., Eberle, A., Sanders, P.: Engineering parallel string sorting. Algorithmica
77(1), 235–286 (2017). https://doi.org/10.1007/s00453-015-0071-1

31. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in
external memory. ACM J. Exp. Algorithmics 21(1), 2.3:1–2.3:27 (2016).
https://doi.org/10.1145/2975593

https://doi.org/10.1137/1.9781611974768.7
https://doi.org/10.1109/IPDPS.2018.00035
https://doi.org/10.1145/3505286
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1007/978-3-030-32686-9_29
https://doi.org/10.4230/LIPIcs.CPM.2016.23
https://doi.org/10.1093/bioinformatics/btv603
https://doi.org/10.1145/3035540
https://doi.org/10.1002/spe.960
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.5445/IR/1000085031
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1145/2975593

24 Bingmann et al.

32 SPP. Bingmann, T., Gog, S., Kurpicz, F.: Scalable construction of text indexes with thrill. In:
BigData. pp. 634–643. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622171

33. Bingmann, T., Sanders, P.: Parallel string sample sort. In: ESA. pp. 169–180. Springer
(2013). https://doi.org/10.1007/978-3-642-40450-4 15

34 SPP. Bingmann, T., Sanders, P., Schimek, M.: Communication-efficient string sorting. In:
IPDPS. pp. 137–147. IEEE (2020). https://doi.org/10.1109/IPDPS47924.2020.00024

35. Blacher, M., Giesen, J., Sanders, P., Wassenberg, J.: Vectorized and performance-
portable quicksort. CoRR abs/2205.05982 (2022)

36. Blelloch, G.E., Anderson, D., Dhulipala, L.: Parlaylib - A toolkit for parallel algo-
rithms on shared-memory multicore machines. In: SPAA. pp. 507–509. ACM (2020).
https://doi.org/10.1145/3350755.3400254

37. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha, M.: A
comparison of sorting algorithms for the connection machine CM-2. Commun. ACM
39(12es), 273–297 (1996)

38. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.:
Cilk: An efficient multithreaded runtime system. J. Parallel Distributed Comput. 37(1),
55–69 (1996). https://doi.org/10.1006/jpdc.1996.0107

39. Borkar, S.: Exascale computing - A fact or a fiction? In: IPDPS. p. 3. IEEE Computer
Society (2013). https://doi.org/10.1109/IPDPS.2013.121

40. Boucher, C., Gagie, T., Kuhnle, A., Langmead, B., Manzini, G., Mun, T.: Prefix-
free parsing for building big bwts. Algorithms Mol. Biol. 14(1), 13:1–13:15 (2019).
https://doi.org/10.1186/s13015-019-0148-5

41. Bramas, B.: A novel hybrid quicksort algorithm vectorized using AVX-512 on in-
tel skylake. Int. J. of Advanced Computer Science and Applications 8(10) (2017),
arXiv:1704.08579

42. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech.
rep. (1994)

43. Canzar, S., Salzberg, S.L.: Short read mapping: An algorithmic tour. Proceedings of the
IEEE 105(3), 436–458 (2017). https://doi.org/10.1109/JPROC.2015.2455551

44. Chen, C., Schmidt, B.: Constructing large suffix trees on a computa-
tional grid. J. Parallel Distributed Comput. 66(12), 1512–1523 (2006).
https://doi.org/10.1016/j.jpdc.2006.08.004

45. Chim, H., Deng, X.: A new suffix tree similarity measure for document clustering. In:
WWW. pp. 121–130. ACM (2007). https://doi.org/10.1145/1242572.1242590

46. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:
SPIRE. pp. 176–187. Springer (2008). https://doi.org/10.1007/978-3-540-89097-3 18

47. Claude, F., Navarro, G., Pereira, A.O.: The wavelet matrix: An efficient wavelet tree for
large alphabets. Inf. Syst. 47, 15–32 (2015). https://doi.org/10.1016/j.is.2014.06.002

48. Claude, F., Nicholson, P.K., Seco, D.: Space efficient wavelet tree construction. In:
SPIRE. pp. 185–196. Springer (2011). https://doi.org/10.1007/978-3-642-24583-1 19

49. Clifford, R.: Distributed suffix trees. J. Discrete Algorithms 3(2-4), 176–197 (2005).
https://doi.org/10.1016/j.jda.2004.08.004

50. Clifford, R., Sergot, M.J.: Distributed and paged suffix trees for large genetic databases.
In: CPM. pp. 70–82. Springer (2003). https://doi.org/10.1007/3-540-44888-8 6

51. Consortium, T.C.P.: Computational pan-genomics: status, promises and challenges.
Briefings Bioinform. 19(1), 118–135 (2018). https://doi.org/10.1093/bib/bbw089

52. Crauser, A., Ferragina, P.: A theoretical and experimental study on the con-
struction of suffix arrays in external memory. Algorithmica 32(1), 1–35 (2002).
https://doi.org/10.1007/s00453-001-0051-5

https://doi.org/10.1109/BigData.2018.8622171
https://doi.org/10.1007/978-3-642-40450-4_15
https://doi.org/10.1109/IPDPS47924.2020.00024
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1109/IPDPS.2013.121
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1109/JPROC.2015.2455551
https://doi.org/10.1016/j.jpdc.2006.08.004
https://doi.org/10.1145/1242572.1242590
https://doi.org/10.1007/978-3-540-89097-3_18
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1007/978-3-642-24583-1_19
https://doi.org/10.1016/j.jda.2004.08.004
https://doi.org/10.1007/3-540-44888-8_6
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1007/s00453-001-0051-5

Scalable Text Index Construction 25

53. Dagum, L., Leonardo, R.: Openmp: An industry-standard api for shared-
memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998).
https://doi.org/10.1109/99.660313

54. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

55. Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg, S.L.:
Alignment of whole genomes. Nucleic Acids Research 27(11), 2369–2376 (1999).
https://doi.org/10.1093/nar/27.11.2369

56. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external mem-
ory suffix array construction. ACM J. Exp. Algorithmics 12, 3.4:1–3.4:24 (2008).
https://doi.org/10.1145/1227161.1402296

57. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for XXL data
sets. Softw. Pract. Exp. 38(6), 589–637 (2008). https://doi.org/10.1002/spe.844

58. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: SPAA. pp. 138–148.
ACM (2003). https://doi.org/10.1145/777412.777435

59. Deo, M., Keely, S.: Parallel suffix array and least common prefix for the GPU. In:
PPOPP. pp. 197–206. ACM (2013). https://doi.org/10.1145/2442516.2442536

60. DeWitt, D.J., Naughton, J.F., Schneider, D.A.: Parallel sorting on a shared-nothing ar-
chitecture using probabilistic splitting. In: PDIS. pp. 280–291. IEEE Computer Society
(1991). https://doi.org/10.1109/PDIS.1991.183115

61. Dinklage, P.: Translating between wavelet tree and wavelet matrix construction. In:
Stringology. pp. 126–135. Czech Technical University in Prague, Faculty of Informa-
tion Technology, Department of Theoretical Computer Science (2019)

62 SPP. Dinklage, P., Ellert, J., Fischer, J., Köppl, D., Penschuck, M.: Bidirectional text compres-
sion in external memory. In: ESA. pp. 41:1–41:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.41

63 SPP. Dinklage, P., Ellert, J., Fischer, J., Kurpicz, F., Löbel, M.: Practical wavelet tree con-
struction. ACM J. Exp. Algorithmics 26 (2021). https://doi.org/10.1145/3457197

64 SPP. Dinklage, P., Fischer, J., Kurpicz, F.: Constructing the wavelet tree and wavelet
matrix in distributed memory. In: ALENEX. pp. 214–228. SIAM (2020).
https://doi.org/10.1137/1.9781611976007.17

65. Edelkamp, S., Weiß, A.: Blockquicksort: Avoiding branch mispredictions in quicksort.
ACM J. Exp. Algorithmics 24(1), 1.4:1–1.4:22 (2019). https://doi.org/10.1145/3274660

66. Edwards, J.A., Vishkin, U.: Parallel algorithms for burrows-wheeler com-
pression and decompression. Theor. Comput. Sci. 525, 10–22 (2014).
https://doi.org/10.1016/j.tcs.2013.10.009

67. Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory BWT and LCP com-
putation for sequence collections with applications. Algorithms Mol. Biol. 14(1), 6:1–
6:15 (2019). https://doi.org/10.1186/s13015-019-0140-0

68 SPP. Ellert, J., Fischer, J., Sitchinava, N.: LCP-aware parallel string sorting. In: Euro-Par
2020: Parallel Processing - 26th International Conference on Parallel and Distributed
Computing, Warsaw, Poland, August 24-28, 2020, Proceedings. pp. 329–342. Springer
(2020). https://doi.org/10.1007/978-3-030-57675-2 21

69 SPP. Ellert, J., Kurpicz, F.: Parallel external memory wavelet tree and wavelet matrix con-
struction. In: SPIRE. pp. 392–406. Springer (2019). https://doi.org/10.1007/978-3-030-
32686-9 28

70. Fagerberg, R., Pagh, A., Pagh, R.: External string sorting: Faster and cache-oblivious.
In: STACS. pp. 68–79. Springer (2006). https://doi.org/10.1007/11672142 4

71. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-
complexity of suffix tree construction. J. ACM 47(6), 987–1011 (2000).
https://doi.org/10.1145/355541.355547

https://doi.org/10.1109/99.660313
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/10.1145/1227161.1402296
https://doi.org/10.1002/spe.844
https://doi.org/10.1145/777412.777435
https://doi.org/10.1145/2442516.2442536
https://doi.org/10.1109/PDIS.1991.183115
https://doi.org/10.4230/LIPIcs.ESA.2019.41
https://doi.org/10.1145/3457197
https://doi.org/10.1137/1.9781611976007.17
https://doi.org/10.1145/3274660
https://doi.org/10.1016/j.tcs.2013.10.009
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1007/978-3-030-57675-2_21
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1007/11672142_4
https://doi.org/10.1145/355541.355547

26 Bingmann et al.

72. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression in
external memory. Algorithmica 63(3), 707–730 (2012). https://doi.org/10.1007/s00453-
011-9535-0

73. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Inf. Com-
put. 207(8), 849–866 (2009). https://doi.org/10.1016/j.ic.2008.12.010

74. Ferragina, P., Manzini, G.: Opportunistic data structures with appli-
cations. In: FOCS. pp. 390–398. IEEE Computer Society (2000).
https://doi.org/10.1109/SFCS.2000.892127

75. Fischer, J., Heun, V.: A new succinct representation of rmq-information and im-
provements in the enhanced suffix array. In: ESCAPE. pp. 459–470. Springer (2007).
https://doi.org/10.1007/978-3-540-74450-4 41

76. Fischer, J., I, T., Köppl, D., Sadakane, K.: Lempel-ziv factorization pow-
ered by space efficient suffix trees. Algorithmica 80(7), 2048–2081 (2018).
https://doi.org/10.1007/s00453-017-0333-1

77 SPP. Fischer, J., Kurpicz, F.: Dismantling divsufsort. In: Stringology. pp. 62–76. Department
of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague (2017)

78 SPP. Fischer, J., Kurpicz, F.: Lightweight distributed suffix array construction. In: ALENEX.
pp. 27–38. SIAM (2019). https://doi.org/10.1137/1.9781611975499.3

79 SPP. Fischer, J., Kurpicz, F., Löbel, M.: Simple, fast and lightweight par-
allel wavelet tree construction. In: ALENEX. pp. 9–20. SIAM (2018).
https://doi.org/10.1137/1.9781611975055.2

80 SPP. Fischer, J., Kurpicz, F., Sanders, P.: Engineering a distributed full-text index. In:
ALENEX. pp. 120–134. SIAM (2017). https://doi.org/10.1137/1.9781611974768.10

81. Flick, P., Aluru, S.: Parallel distributed memory construction of suffix
and longest common prefix arrays. In: SC. pp. 16:1–16:10. ACM (2015).
https://doi.org/10.1145/2807591.2807609

82. Flick, P., Aluru, S.: Parallel construction of suffix trees and the all-nearest-
smaller-values problem. In: IPDPS. pp. 12–21. IEEE Computer Society (2017).
https://doi.org/10.1109/IPDPS.2017.62

83. Flick, P., Aluru, S.: Distributed enhanced suffix arrays: efficient algo-
rithms for construction and querying. In: SC. pp. 72:1–72:17. ACM (2019).
https://doi.org/10.1145/3295500.3356211

84. da Fonseca, P.G.S., da Silva, I.B.F.: Online construction of wavelet trees. In:
SEA. pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.SEA.2017.16

85. Fuentes-Sepúlveda, J., Elejalde, E., Ferres, L., Seco, D.: Parallel construction of
wavelet trees on multicore architectures. Knowl. Inf. Syst. 51(3), 1043–1066 (2017).
https://doi.org/10.1007/s10115-016-1000-6

86. Fuentes-Sepúlveda, J., Navarro, G., Nekrich, Y.: Parallel computation of the bur-
rows wheeler transform in compact space. Theor. Comput. Sci. 812, 123–136 (2020).
https://doi.org/10.1016/j.tcs.2019.09.030

87. Furtak, T., Amaral, J.N., Niewiadomski, R.: Using SIMD registers and instructions to
enable instruction-level parallelism in sorting algorithms. In: SPAA. pp. 348–357. ACM
(2007). https://doi.org/10.1145/1248377.1248436

88. Futamura, N., Aluru, S., Kurtz, S.: Parallel suffix sorting. Electrical Engineering and
Computer Science 64 (2001)

89. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay,
V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L.,

https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.1007/s00453-011-9535-0
https://doi.org/10.1016/j.ic.2008.12.010
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1137/1.9781611975055.2
https://doi.org/10.1137/1.9781611974768.10
https://doi.org/10.1145/2807591.2807609
https://doi.org/10.1109/IPDPS.2017.62
https://doi.org/10.1145/3295500.3356211
https://doi.org/10.4230/LIPIcs.SEA.2017.16
https://doi.org/10.1007/s10115-016-1000-6
https://doi.org/10.1016/j.tcs.2019.09.030
https://doi.org/10.1145/1248377.1248436

Scalable Text Index Construction 27

Woodall, T.S.: Open MPI: goals, concept, and design of a next generation MPI imple-
mentation. In: PVM/MPI. pp. 97–104. Springer (2004). https://doi.org/10.1007/978-3-
540-30218-6 19

90. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: Lz77-based
self-indexing with faster pattern matching. In: LATIN. pp. 731–742. Springer (2014).
https://doi.org/10.1007/978-3-642-54423-1 63

91. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal
text searching in bwt-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020).
https://doi.org/10.1145/3375890

92. Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T., Jones, W.,
Garg, S., Markello, C., Lin, M.F., Paten, B., Durbin, R.: Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nature Biotechnology
36(9), 875–879 (2018). https://doi.org/10.1038/nbt.4227

93. Gilchrist, J., Cuhadar, A.: Parallel lossless data compression based on the burrows-
wheeler transform. In: AINA. pp. 877–884. IEEE Computer Society (2007).
https://doi.org/10.1109/AINA.2007.109

94. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and
play with succinct data structures. In: SEA. pp. 326–337. Springer (2014).
https://doi.org/10.1007/978-3-319-07959-2 28

95. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: Pat trees and pat
arrays. In: Information Retrieval: Data Structures & Algorithms, pp. 66–82. Prentice-
Hall (1992)

96. Goodrich, M.T.: Communication-efficient parallel sorting. SIAM J. Comput. 29(2),
416–432 (1999). https://doi.org/10.1137/S0097539795294141

97. Goto, K.: Optimal time and space construction of suffix arrays and LCP arrays for inte-
ger alphabets. In: Stringology. pp. 111–125. Czech Technical University in Prague, Fac-
ulty of Information Technology, Department of Theoretical Computer Science (2019)

98. Gropp, W., Lusk, E.L., Doss, N.E., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996). https://doi.org/10.1016/0167-8191(96)00024-5

99. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
SODA. pp. 841–850. ACM/SIAM (2003)

100. Grossi, R., Vitter, J.S., Xu, B.: Wavelet trees: From theory to practice. In: CCP. pp.
210–221. IEEE Computer Society (2011). https://doi.org/10.1109/CCP.2011.16

101. Ha, L.K., Krüger, J.H., Silva, C.T.: Fast four-way parallel radix sorting on gpus.
Comput. Graph. Forum 28(8), 2368–2378 (2009). https://doi.org/10.1111/j.1467-
8659.2009.01542.x

102. Hagerup, T.: Optimal parallel string algorithms: sorting, merging and
computing the minimum. In: STOC. pp. 382–391. ACM (1994).
https://doi.org/10.1145/195058.195202

103. Han, L.B., Wu, Y., Nong, G.: Succinct suffix sorting in external memory. Inf. Process.
Manag. 58(1), 102378 (2021). https://doi.org/10.1016/j.ipm.2020.102378

104. Hayashi, S., Taura, K.: Parallel and memory-efficient burrows-wheeler
transform. In: BigData. pp. 43–50. IEEE Computer Society (2013).
https://doi.org/10.1109/BigData.2013.6691757

105. He, X., Huang, C.: Communication efficient BSP algorithm for all nearest
smaller values problem. J. Parallel Distributed Comput. 61(10), 1425–1438 (2001).
https://doi.org/10.1006/jpdc.2001.1741

106. Helman, D.R., Bader, D.A., JáJá, J.: A randomized parallel sorting algorithm
with an experimental study. J. Parallel Distributed Comput. 52(1), 1–23 (1998).
https://doi.org/10.1006/jpdc.1998.1462

https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1145/3375890
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1109/AINA.2007.109
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1137/S0097539795294141
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1109/CCP.2011.16
https://doi.org/10.1111/j.1467-8659.2009.01542.x
https://doi.org/10.1111/j.1467-8659.2009.01542.x
https://doi.org/10.1145/195058.195202
https://doi.org/10.1016/j.ipm.2020.102378
https://doi.org/10.1109/BigData.2013.6691757
https://doi.org/10.1006/jpdc.2001.1741
https://doi.org/10.1006/jpdc.1998.1462

28 Bingmann et al.

107. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962).
https://doi.org/10.1093/comjnl/5.1.10

108. Hou, K., Wang, H., Feng, W.: A framework for the automatic vectorization of parallel
sort on x86-based processors. IEEE Trans. Parallel Distrib. Syst. 29(5), 958–972 (2018).
https://doi.org/10.1109/TPDS.2018.2789903

109. Huang, B., Gao, J., Li, X.: An empirically optimized radix sort for GPU. In: ISPA. pp.
234–241. IEEE Computer Society (2009). https://doi.org/10.1109/ISPA.2009.89

110. Inoue, H., Moriyama, T., Komatsu, H., Nakatani, T.: A high-performance sorting algo-
rithm for multicore single-instruction multiple-data processors. Softw. Pract. Exp. 42(6),
753–777 (2012). https://doi.org/10.1002/spe.1102

111. Itoh, H., Tanaka, H.: An efficient method for in memory construction of suf-
fix arrays. In: SPIRE/CRIWG. pp. 81–88. IEEE Computer Society (1999).
https://doi.org/10.1109/SPIRE.1999.796581

112. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley (1992)
113. JáJá, J., Ryu, K.W., Vishkin, U.: Sorting strings and constructing digital search trees

in parallel. Theor. Comput. Sci. 154(2), 225–245 (1996). https://doi.org/10.1016/0304-
3975(94)00263-0

114. Kaneta, Y.: Fast wavelet tree construction in practice. In: SPIRE. pp. 218–232. Springer
(2018). https://doi.org/10.1007/978-3-030-00479-8 18

115. Kärkkäinen, J., Kempa, D.: Faster external memory LCP array construction. In:
ESA. pp. 61:1–61:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016).
https://doi.org/10.4230/LIPIcs.ESA.2016.61

116. Kärkkäinen, J., Kempa, D.: LCP array construction in external memory. ACM J. Exp.
Algorithmics 21(1), 1.7:1–1.7:22 (2016). https://doi.org/10.1145/2851491

117. Kärkkäinen, J., Kempa, D.: Engineering a lightweight external memory suffix array
construction algorithm. Mathematics in Computer Science 11(2), 137–149 (2017).
https://doi.org/10.1007/s11786-016-0281-1

118. Kärkkäinen, J., Kempa, D.: Engineering external memory LCP array construction: Par-
allel, in-place and large alphabet. In: SEA. pp. 17:1–17:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.17

119. Kärkkäinen, J., Kempa, D.: Better external memory LCP array construction. ACM J.
Exp. Algorithmics 24(1), 1.3:1–1.3:27 (2019). https://doi.org/10.1145/3297723

120. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-ziv parsing in external memory. In:
DCC. pp. 153–162. IEEE (2014). https://doi.org/10.1109/DCC.2014.78

121. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Parallel external memory suffix sorting. In:
CPM. pp. 329–342. Springer (2015). https://doi.org/10.1007/978-3-319-19929-0 28

122. Kärkkäinen, J., Kempa, D., Puglisi, S.J., Zhukova, B.: Engineering exter-
nal memory induced suffix sorting. In: ALENEX. pp. 98–108. SIAM (2017).
https://doi.org/10.1137/1.9781611974768.8

123. Kärkkäinen, J., Rantala, T.: Engineering radix sort for strings. In: SPIRE. pp. 3–14.
Springer (2008). https://doi.org/10.1007/978-3-540-89097-3 3

124. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM
53(6), 918–936 (2006). https://doi.org/10.1145/1217856.1217858

125. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: CPM. pp. 181–192. Springer
(2001). https://doi.org/10.1007/3-540-48194-X 17

126. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: STOC. pp. 756–767. ACM (2019).
https://doi.org/10.1145/3313276.3316368

https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1109/TPDS.2018.2789903
https://doi.org/10.1109/ISPA.2009.89
https://doi.org/10.1002/spe.1102
https://doi.org/10.1109/SPIRE.1999.796581
https://doi.org/10.1016/0304-3975(94)00263-0
https://doi.org/10.1016/0304-3975(94)00263-0
https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.4230/LIPIcs.ESA.2016.61
https://doi.org/10.1145/2851491
https://doi.org/10.1007/s11786-016-0281-1
https://doi.org/10.4230/LIPIcs.SEA.2017.17
https://doi.org/10.1145/3297723
https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1007/978-3-319-19929-0_28
https://doi.org/10.1137/1.9781611974768.8
https://doi.org/10.1007/978-3-540-89097-3_3
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1145/3313276.3316368

Scalable Text Index Construction 29

127. Kitajima, J.P., Navarro, G.: A fast distributed suffix array generation al-
gorithm. In: SPIRE/CRIWG. pp. 97–105. IEEE Computer Society (1999).
https://doi.org/10.1109/SPIRE.1999.796583

128. Kitajima, J.P., Ribeiro-Neto, B., Ziviani, N.: Network and memory analysis in dis-
tributed parallel generation of pat arrays. In: BSCA. pp. 192–202 (1996)

129. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley (1973)

130. Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., Manzini, G.: Efficient con-
struction of a complete index for pan-genomics read alignment. In: RECOMB. pp. 158–
173. Springer (2019). https://doi.org/10.1007/978-3-030-17083-7 10

131. Kulla, F., Sanders, P.: Scalable parallel suffix array construction. Parallel Comput. 33(9),
605–612 (2007). https://doi.org/10.1016/j.parco.2007.06.004

132. Labeit, J., Shun, J., Blelloch, G.E.: Parallel lightweight wavelet tree, suf-
fix array and fm-index construction. J. Discrete Algorithms 43, 2–17 (2017).
https://doi.org/10.1016/j.jda.2017.04.001

133. Lan, Y., Mohamed, M.A.: Parallel quicksort in hypercubes. In: SAC. pp. 740–746. ACM
(1992). https://doi.org/10.1145/130069.130085

134. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nature meth-
ods 9(4), 357 (2012). https://doi.org/10.1038/nmeth.1923

135. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology 10(3), R25
(2009). https://doi.org/10.1186/gb-2009-10-3-r25

136. Lao, B., Nong, G., Chan, W.H., Pan, Y.: Fast induced sorting suffixes on a multicore ma-
chine. J. Supercomput. 74(7), 3468–3485 (2018). https://doi.org/10.1007/s11227-018-
2395-5

137. Lao, B., Nong, G., Chan, W.H., Xie, J.Y.: Fast in-place suffix sorting on
a multicore computer. IEEE Trans. Computers 67(12), 1737–1749 (2018).
https://doi.org/10.1109/TC.2018.2842050

138. Lee, S., Jeon, M., Kim, D., Sohn, A.: Partitioned parallel radix sort. J. Parallel Dis-
tributed Comput. 62(4), 656–668 (2002). https://doi.org/10.1006/jpdc.2001.1808

139. Li, H.: Fast construction of fm-index for long sequence reads. Bioinform. 30(22), 3274–
3275 (2014). https://doi.org/10.1093/bioinformatics/btu541

140. Li, H., Durbin, R.: Fast and accurate short read alignment with
burrows-wheeler transform. Bioinform. 25(14), 1754–1760 (2009).
https://doi.org/10.1093/bioinformatics/btp324

141. Li, Z., Li, J., Huo, H.: Optimal in-place suffix sorting. In: SPIRE. pp. 268–284. Springer
(2018). https://doi.org/10.1007/978-3-030-00479-8 22

142. Lippert, R.: Space-efficient whole genome comparisons with Bur-
rows Wheeler transforms. J. Comput. Biol. 12(4), 407–415 (2005).
https://doi.org/10.1089/cmb.2005.12.407

143. Liu, Y., Hankeln, T., Schmidt, B.: Parallel and space-efficient construction of burrows-
wheeler transform and suffix array for big genome data. IEEE/ACM Trans. Comput. Bi-
ology Bioinform. 13(3), 592–598 (2016). https://doi.org/10.1109/TCBB.2015.2430314

144. Louza, F.A., Gog, S., Telles, G.P.: Induced Suffix Sorting. Springer (2020).
https://doi.org/10.1007/978-3-030-55108-7 3

145. Louza, F.A., Telles, G.P., Hoffmann, S., de Aguiar Ciferri, C.D.: Generalized enhanced
suffix array construction in external memory. Algorithms Mol. Biol. 12(1), 26:1–26:16
(2017). https://doi.org/10.1186/s13015-017-0117-9

146. Mahmoud, H.M.: Sorting: A Distribution Theory. John Wiley & Sons (2000)
147. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comput. Sci.

387(3), 332–347 (2007). https://doi.org/10.1016/j.tcs.2007.07.013

https://doi.org/10.1109/SPIRE.1999.796583
https://doi.org/10.1007/978-3-030-17083-7_10
https://doi.org/10.1016/j.parco.2007.06.004
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1145/130069.130085
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1007/s11227-018-2395-5
https://doi.org/10.1007/s11227-018-2395-5
https://doi.org/10.1109/TC.2018.2842050
https://doi.org/10.1006/jpdc.2001.1808
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1007/978-3-030-00479-8_22
https://doi.org/10.1089/cmb.2005.12.407
https://doi.org/10.1109/TCBB.2015.2430314
https://doi.org/10.1007/978-3-030-55108-7_3
https://doi.org/10.1186/s13015-017-0117-9
https://doi.org/10.1016/j.tcs.2007.07.013

30 Bingmann et al.

148. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching - effi-
cient secondary memory and distributed implementation of compressed suffix arrays. In:
ISAAC. pp. 681–692. Springer (2004). https://doi.org/10.1007/978-3-540-30551-4 59

149. Makris, C.: Wavelet trees: A survey. Comput. Sci. Inf. Syst. 9(2), 585–625 (2012).
https://doi.org/10.2298/CSIS110606004M

150. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

151. Marchet, C., Boucher, C., Puglisi, S.J., Medvedev, P., Salson, M., Chikhi, R.: Data struc-
tures based on k-mers for querying large collections of sequencing datasets. bioRxiv
(2020). https://doi.org/10.1101/866756

152. McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort. Comput. Syst. 6(1),
5–27 (1993)

153. Menon, R.K., Bhat, G.P., Schatz, M.C.: Rapid parallel genome indexing with mapre-
duce. In: MapReduce. p. 51–58 (2011). https://doi.org/10.1145/1996092.1996104

154. Merrill, D., Grimshaw, A.S.: High performance and scalable radix sorting: a case study
of implementing dynamic parallelism for GPU computing. Parallel Process. Lett. 21(2),
245–272 (2011). https://doi.org/10.1142/S0129626411000187

155. Metwally, A.A., Kandil, A.H., Abouelhoda, M.: Distributed suffix array construc-
tion algorithms: Comparison of two algorithms. In: CIBEC. pp. 27–30. IEEE (2016).
https://doi.org/10.1109/CIBEC.2016.7836092

156. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded in al-
phanumeric. J. ACM 15(4), 514–534 (1968). https://doi.org/10.1145/321479.321481

157. Munro, J.I., Navarro, G., Nekrich, Y.: Space-efficient construction of compressed
indexes in deterministic linear time. In: SODA. pp. 408–424. SIAM (2017).
https://doi.org/10.1137/1.9781611974782.26

158. Munro, J.I., Nekrich, Y., Vitter, J.S.: Fast construction of wavelet trees. Theor. Comput.
Sci. 638, 91–97 (2016). https://doi.org/10.1016/j.tcs.2015.11.011

159. Musser, D.R.: Introspective sorting and selection algorithms. Softw. Pract. Exp. 27(8),
983–993 (1997). https://doi.org/10.1002/(SICI)1097-024X(199708)27:8¡983::AID-
SPE117¿3.0.CO;2-%23

160. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014).
https://doi.org/10.1016/j.jda.2013.07.004

161. Navarro, G., Kitajima, J.P., Ribeiro-Neto, B.A., Ziviani, N.: Distributed generation of
suffix arrays. In: CPM. pp. 102–115. Springer (1997). https://doi.org/10.1007/3-540-
63220-4 54

162. Ng, W., Kakehi, K.: Merging string sequences by longest common prefixes. IPSJ Digital
Courier 4, 69–78 (2008)

163. Nong, G., Chan, W.H., Hu, S.Q., Wu, Y.: Induced sorting suffixes in external memory.
ACM Trans. Inf. Syst. 33(3), 12:1–12:15 (2015). https://doi.org/10.1145/2699665

164. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time
suffix array construction. IEEE Trans. Computers 60(10), 1471–1484 (2011).
https://doi.org/10.1109/TC.2010.188

165. Obeya, O., Kahssay, E., Fan, E., Shun, J.: Theoretically-efficient and prac-
tical parallel in-place radix sorting. In: SPAA. pp. 213–224. ACM (2019).
https://doi.org/10.1145/3323165.3323198

166. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch Verlag (2013)

167. Ohlebusch, E., Beller, T., Abouelhoda, M.I.: Computing the burrows-wheeler trans-
form of a string and its reverse in parallel. J. Discrete Algorithms 25, 21–33 (2014).
https://doi.org/10.1016/j.jda.2013.06.002

https://doi.org/10.1007/978-3-540-30551-4_59
https://doi.org/10.2298/CSIS110606004M
https://doi.org/10.1137/0222058
https://doi.org/10.1101/866756
https://doi.org/10.1145/1996092.1996104
https://doi.org/10.1142/S0129626411000187
https://doi.org/10.1109/CIBEC.2016.7836092
https://doi.org/10.1145/321479.321481
https://doi.org/10.1137/1.9781611974782.26
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-%23
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1007/3-540-63220-4_54
https://doi.org/10.1007/3-540-63220-4_54
https://doi.org/10.1145/2699665
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1145/3323165.3323198
https://doi.org/10.1016/j.jda.2013.06.002

Scalable Text Index Construction 31

168. Ohlebusch, E., Gog, S., Kügel, A.: Computing matching statistics and maximal exact
matches on compressed full-text indexes. In: SPIRE. pp. 347–358. Springer (2010).
https://doi.org/10.1007/978-3-642-16321-0 36

169. Osipov, V.: Parallel suffix array construction for shared memory architectures. In:
SPIRE. pp. 379–384. Springer (2012). https://doi.org/10.1007/978-3-642-34109-0 40

170. Patel, R.A., Zhang, Y., Mak, J., Davidson, A., Owens, J.D.: Parallel lossless data
compression on the gpu. In: InPar. pp. 1–9. IEEE Computer Society (2012).
https://doi.org/10.1109/InPar.2012.6339599

171. Pockrandt, C.: Approximate String Matching: Improving Data Structures and Al-
gorithms. Ph.D. thesis, Free University of Berlin, Dahlem, Germany (2019).
https://doi.org/10.17169/refubium-2185

172. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction algo-
rithms. ACM Comput. Surv. 39(2), 4 (2007). https://doi.org/10.1145/1242471.1242472

173. Rahman, N., Raman, R.: Adapting radix sort to the memory hierarchy. ACM J. Exp.
Algorithmics 6, 7 (2001). https://doi.org/10.1145/945394.945401

174. Reinders, J.: Intel threading building blocks - outfitting C++ for multi-core processor
parallelism. O’Reilly (2007)

175. Reinert, K., Dadi, T.H., Ehrhardt, M., Hauswedell, H., Mehringer, S., Rahn, R., Kim, J.,
Pockrandt, C., Winkler, J., Siragusa, E., Urgese, G., Weese, D.: The seqan c++ template
library for efficient sequence analysis: A resource for programmers. Journal of Biotech-
nology 261, 157–168 (2017). https://doi.org/10.1016/j.jbiotec.2017.07.017

176. Sadakane, K.: Compressed text databases with efficient query algorithms based
on the compressed suffix array. In: ISAAC. pp. 410–421. Springer (2000).
https://doi.org/10.1007/3-540-40996-3 35

177. Sadakane, K.: Succinct representations of lcp information and improvements in the com-
pressed suffix arrays. In: SODA. pp. 225–232. ACM/SIAM (2002)

178. Sanders, P., Hansch, T.: Efficient massively parallel quicksort. In: IRREGULAR. pp.
13–24. Springer (1997). https://doi.org/10.1007/3-540-63138-0 2

179. Sanders, P., Schlag, S., Müller, I.: Communication efficient algorithms for funda-
mental big data problems. In: BigData. pp. 15–23. IEEE Computer Society (2013).
https://doi.org/10.1109/BigData.2013.6691549

180. Sanders, P., Winkel, S.: Super scalar sample sort. In: ESA. pp. 784–796. Springer (2004).
https://doi.org/10.1007/978-3-540-30140-0 69

181. Satish, N., Harris, M.J., Garland, M.: Designing efficient sorting al-
gorithms for manycore gpus. In: IPDPS. pp. 1–10. IEEE (2009).
https://doi.org/10.1109/IPDPS.2009.5161005

182. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 10(2),
217–255 (1963). https://doi.org/10.1145/321160.321170

183. Shun, J.: Fast parallel computation of longest common prefixes. In: SC. pp. 387–398.
IEEE Computer Society (2014). https://doi.org/10.1109/SC.2014.37

184. Shun, J.: Parallel wavelet tree construction. In: DCC. pp. 63–72. IEEE (2015).
https://doi.org/10.1109/DCC.2015.7

185. Shun, J.: Improved parallel construction of wavelet trees and rank/select structures. Inf.
Comput. 273, 104516 (2020). https://doi.org/10.1016/j.ic.2020.104516

186. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Kyrola, A., Simhadri, H.V., Tang-
wongsan, K.: Brief announcement: the problem based benchmark suite. In: SPAA. pp.
68–70. ACM (2012). https://doi.org/10.1145/2312005.2312018

187. Simpson, J.T., Durbin, R.: Efficient construction of an assembly
string graph using the FM-index. Bioinform. 26(12), 367–373 (2010).
https://doi.org/10.1093/bioinformatics/btq217

https://doi.org/10.1007/978-3-642-16321-0_36
https://doi.org/10.1007/978-3-642-34109-0_40
https://doi.org/10.1109/InPar.2012.6339599
https://doi.org/10.17169/refubium-2185
https://doi.org/10.1145/1242471.1242472
https://doi.org/10.1145/945394.945401
https://doi.org/10.1016/j.jbiotec.2017.07.017
https://doi.org/10.1007/3-540-40996-3_35
https://doi.org/10.1007/3-540-63138-0_2
https://doi.org/10.1109/BigData.2013.6691549
https://doi.org/10.1007/978-3-540-30140-0_69
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1145/321160.321170
https://doi.org/10.1109/SC.2014.37
https://doi.org/10.1109/DCC.2015.7
https://doi.org/10.1016/j.ic.2020.104516
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1093/bioinformatics/btq217

32 Bingmann et al.

188. Singler, J., Sanders, P., Putze, F.: MCSTL: the multi-core standard template library. In:
Euro-Par. pp. 682–694. Springer (2007). https://doi.org/10.1007/978-3-540-74466-5 72

189. Sinha, R., Zobel, J.: Efficient trie-based sorting of large sets of strings. In: ACSC. pp.
11–18. Australian Computer Society (2003)

190. Sirén, J.: Indexing variation graphs. In: ALENEX. pp. 13–27. SIAM (2017).
https://doi.org/10.1137/1.9781611974768.2

191. Sirén, J., Garrison, E., Novak, A.M., Paten, B., Durbin, R.: Haplotype-aware graph in-
dexes. Bioinform. 36(2), 400–407 (2020). https://doi.org/10.1093/bioinformatics/btz575

192. Sohn, A., Kodama, Y.: Load balanced parallel radix sort. In: ICS. pp. 305–312. ACM
(1998). https://doi.org/10.1145/277830.277903

193. Solomonik, E., Kalé, L.V.: Highly scalable parallel sorting. In: IPDPS. pp. 1–12. IEEE
(2010). https://doi.org/10.1109/IPDPS.2010.5470406

194. Stehle, E., Jacobsen, H.: A memory bandwidth-efficient hybrid radix
sort on gpus. In: SIGMOD Conference. pp. 417–432. ACM (2017).
https://doi.org/10.1145/3035918.3064043

195. Sun, W., Ma, Z.: Parallel lexicographic names construction with CUDA. In: ICPADS.
pp. 913–918. IEEE Computer Society (2009). https://doi.org/10.1109/ICPADS.2009.31

196. Sundar, H., Malhotra, D., Biros, G.: Hyksort: a new variant of hypercube quick-
sort on distributed memory architectures. In: ICS. pp. 293–302. ACM (2013).
https://doi.org/10.1145/2464996.2465442

197. Tischler, G.: On wavelet tree construction. In: CPM. pp. 208–218. Springer (2011).
https://doi.org/10.1007/978-3-642-21458-5 19

198. Trinidad, J.F.M., Cumplido-Parra, R., Uribe, C.F.: An fpga-based parallel sorting ar-
chitecture for the burrows wheeler transform. In: ReConFig. IEEE Computer Society
(2005). https://doi.org/10.1109/RECONFIG.2005.9

199. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995).
https://doi.org/10.1007/BF01206331

200. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–
111 (1990). https://doi.org/10.1145/79173.79181

201. Wang, H., Peng, S., Lu, Y., Wu, C., Wen, J., Liu, J., Zhu, X.: BWTCP: A parallel
method for constructing BWT in large collection of genomic reads. In: ISC. pp. 171–
178. Springer (2015). https://doi.org/10.1007/978-3-319-20119-1 13

202. Wang, L., Baxter, S., Owens, J.D.: Fast parallel skew and prefix-doubling suffix ar-
ray construction on the GPU. Concurr. Comput. Pract. Exp. 28(12), 3466–3484 (2016).
https://doi.org/10.1002/cpe.3867

203. Wassenberg, J., Sanders, P.: Engineering a multi-core radix sort. In: Euro-Par (2). pp.
160–169. Springer (2011). https://doi.org/10.1007/978-3-642-23397-5 16

204. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS). pp. 1–11. IEEE
Computer Society (1973). https://doi.org/10.1109/SWAT.1973.13

205. Wild, S., Nebel, M.E., Neininger, R.: Average case and distributional analy-
sis of dual-pivot quicksort. ACM Trans. Algorithms 11(3), 22:1–22:42 (2015).
https://doi.org/10.1145/2629340

206. Wu, Y., Lao, B., Ma, X., Nong, G.: An improved algorithm for building suffix array in
external memory. In: PAAP. pp. 320–330. Springer (2019). https://doi.org/10.1007/978-
981-15-2767-8 29

207. Xiaochen, T., Rocki, K., Suda, R.: Register level sort algorithm on
multi-core SIMD processors. In: IA3@SC. pp. 9:1–9:8. ACM (2013).
https://doi.org/10.1145/2535753.2535762

208. Xie, J.Y., Lao, B., Nong, G.: In-place suffix sorting on a multicore computer with better
design. In: PAAP. pp. 331–342. Springer (2019). https://doi.org/10.1007/978-981-15-
2767-8 30

https://doi.org/10.1007/978-3-540-74466-5_72
https://doi.org/10.1137/1.9781611974768.2
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1145/277830.277903
https://doi.org/10.1109/IPDPS.2010.5470406
https://doi.org/10.1145/3035918.3064043
https://doi.org/10.1109/ICPADS.2009.31
https://doi.org/10.1145/2464996.2465442
https://doi.org/10.1007/978-3-642-21458-5_19
https://doi.org/10.1109/RECONFIG.2005.9
https://doi.org/10.1007/BF01206331
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-3-319-20119-1_13
https://doi.org/10.1002/cpe.3867
https://doi.org/10.1007/978-3-642-23397-5_16
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1145/2629340
https://doi.org/10.1007/978-981-15-2767-8_29
https://doi.org/10.1007/978-981-15-2767-8_29
https://doi.org/10.1145/2535753.2535762
https://doi.org/10.1007/978-981-15-2767-8_30
https://doi.org/10.1007/978-981-15-2767-8_30

Scalable Text Index Construction 33

209. Yin, Z., Zhang, T., Müller, A., Liu, H., Wei, Y., Schmidt, B., Liu,
W.: Efficient parallel sort on avx-512-based multi-core and many-core
architectures. In: HPCC/SmartCity/DSS. pp. 168–176. IEEE (2019).
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038

210. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster com-
puting with working sets. In: HotCloud. USENIX Association (2010)

211. Zhou, D., Andersen, D.G., Kaminsky, M.: Space-efficient, high-performance rank and
select structures on uncompressed bit sequences. In: SEA. pp. 151–163. Springer (2013).
https://doi.org/10.1007/978-3-642-38527-8 15

212. Zhu, G., Guo, C., Lu, L., Huang, Z., Yuan, C., Gu, R., Huang, Y.: DGST: efficient and
scalable suffix tree construction on distributed data-parallel platforms. Parallel Comput.
87, 87–102 (2019). https://doi.org/10.1016/j.parco.2019.06.002

213. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory 23(3), 337–343 (1977). https://doi.org/10.1109/TIT.1977.1055714

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00038
https://doi.org/10.1007/978-3-642-38527-8_15
https://doi.org/10.1016/j.parco.2019.06.002
https://doi.org/10.1109/TIT.1977.1055714

	Scalable Text Index Construction

