
PaCHash: Packed and Compressed Hash Tables

First ACDA Workshop in Aussois

Florian Kurpicz (joint work with Hans-Peter Lehmann and Peter Sanders)

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit b18d7d0 compiled at 2022-09-06-08:37

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

hash table for objects of
variable size

storing objects in external
memory

very small internal memory
data structure

retrieve objects in 1 I/O

consecutive I/O (*)

objects of size 256 bytes

in blocks of size 4096 bytes

internal space for one block

Method Ib α I/Os

fix
ed

Larson et al. [LR85] 96 <96 1
SILT SortedStore [Lim+11] 51 100 1
Linear Separator [Lar88] 8 85 1
Separator [GL88; LK84] 6 98 1
Robin Hood [Cel88] 3 99 1.3
Ramakrishna et al. [RT89] 4 80 1
Jensen, Pagh [JP08] 0 80 1.25
Cuckoo [Aza+94; Pag03] 0 <100 2
PaCHash, a = 1 2 100 2*
PaCHash, a = 8 5 100 1.13*

va
ria

bl
e SILT LogStore [Lim+11] 832 100 1

SkimpyStash [DSL11] 32 ≤98 8
PaCHash, a = 1 2 99.95 2.06*
PaCHash, a = 8 5 99.95 1.19*

2/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Motivation

hash table for objects of
variable size

storing objects in external
memory

very small internal memory
data structure

retrieve objects in 1 I/O

consecutive I/O (*)

objects of size 256 bytes

in blocks of size 4096 bytes

internal space for one block

Method Ib α I/Os

fix
ed

Larson et al. [LR85] 96 <96 1
SILT SortedStore [Lim+11] 51 100 1
Linear Separator [Lar88] 8 85 1
Separator [GL88; LK84] 6 98 1
Robin Hood [Cel88] 3 99 1.3
Ramakrishna et al. [RT89] 4 80 1
Jensen, Pagh [JP08] 0 80 1.25
Cuckoo [Aza+94; Pag03] 0 <100 2
PaCHash, a = 1 2 100 2*
PaCHash, a = 8 5 100 1.13*

va
ria

bl
e SILT LogStore [Lim+11] 832 100 1

SkimpyStash [DSL11] 32 ≤98 8
PaCHash, a = 1 2 99.95 2.06*
PaCHash, a = 8 5 99.95 1.19*

2/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Motivation

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM

3/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

external memory blocks of size B

bins containing (self-delimiting) objects

offset requiring d = 0..⌈log B⌉ bits

B̄ = B− d remaining per EM block

n objects of total size N

m = N/B̄ blocks in EM

p = ⟨p1, . . . , pm⟩ internal memory

alternatives for different object sizes

d Case Description

0 Identical object sizes, zero
terminated strings and anal-
ogous cases

⌈log(w + 1)⌉ Objects that use variable bit-
length encoding with ≤ w ≤
B bits

⌈log(W/w + 1)⌉ Objects of size divis-
ible by w with W =
min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting
position of a bin

4/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Setting

external memory blocks of size B

bins containing (self-delimiting) objects

offset requiring d = 0..⌈log B⌉ bits

B̄ = B− d remaining per EM block

n objects of total size N

m = N/B̄ blocks in EM

p = ⟨p1, . . . , pm⟩ internal memory

alternatives for different object sizes

d Case Description

0 Identical object sizes, zero
terminated strings and anal-
ogous cases

⌈log(w + 1)⌉ Objects that use variable bit-
length encoding with ≤ w ≤
B bits

⌈log(W/w + 1)⌉ Objects of size divis-
ible by w with W =
min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting
position of a bin

4/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Setting

external memory blocks of size B

bins containing (self-delimiting) objects

offset requiring d = 0..⌈log B⌉ bits

B̄ = B− d remaining per EM block

n objects of total size N

m = N/B̄ blocks in EM

p = ⟨p1, . . . , pm⟩ internal memory

alternatives for different object sizes

d Case Description

0 Identical object sizes, zero
terminated strings and anal-
ogous cases

⌈log(w + 1)⌉ Objects that use variable bit-
length encoding with ≤ w ≤
B bits

⌈log(W/w + 1)⌉ Objects of size divis-
ible by w with W =
min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting
position of a bin

4/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Setting

external memory blocks of size B

bins containing (self-delimiting) objects

offset requiring d = 0..⌈log B⌉ bits

B̄ = B− d remaining per EM block

n objects of total size N

m = N/B̄ blocks in EM

p = ⟨p1, . . . , pm⟩ internal memory

alternatives for different object sizes

d Case Description

0 Identical object sizes, zero
terminated strings and anal-
ogous cases

⌈log(w + 1)⌉ Objects that use variable bit-
length encoding with ≤ w ≤
B bits

⌈log(W/w + 1)⌉ Objects of size divis-
ible by w with W =
min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting
position of a bin

4/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Setting

Query Algorithm

2 3 7 9

b = h(x)

find predecessor pi of b

if pi = b let i = i − 1

find first j with pj > b

Uncompressed Bit Vector
finding predecessor in bit vector in O(1) time

requires m(a + 1) + o(m(a + 1)) bits of space
(uncompressed)

Elias-Fano Coding
using Elias-Fano coding saves space

given k monotonic increasing integers in 1..u
store log k MSBs as bit vector
store log(u/k) LSBs plain
k(2 + log(u/k)) + 1 + o(k) bits in total

predecessor in O(log(u/k)) time

finding range of ones in bit vector

5/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Finding Blocks

Query Algorithm

2 3 7 9

b = h(x)

find predecessor pi of b

if pi = b let i = i − 1

find first j with pj > b

Uncompressed Bit Vector
finding predecessor in bit vector in O(1) time

requires m(a + 1) + o(m(a + 1)) bits of space
(uncompressed)

Elias-Fano Coding
using Elias-Fano coding saves space

given k monotonic increasing integers in 1..u
store log k MSBs as bit vector
store log(u/k) LSBs plain
k(2 + log(u/k)) + 1 + o(k) bits in total

predecessor in O(log(u/k)) time

finding range of ones in bit vector

5/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Finding Blocks

Query Algorithm

2 3 7 9

b = h(x)

find predecessor pi of b

if pi = b let i = i − 1

find first j with pj > b

Uncompressed Bit Vector
finding predecessor in bit vector in O(1) time

requires m(a + 1) + o(m(a + 1)) bits of space
(uncompressed)

Elias-Fano Coding
using Elias-Fano coding saves space

given k monotonic increasing integers in 1..u
store log k MSBs as bit vector
store log(u/k) LSBs plain
k(2 + log(u/k)) + 1 + o(k) bits in total

predecessor in O(log(u/k)) time

finding range of ones in bit vector

5/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Finding Blocks

Lemma: Space with Elias-Fano Coding
When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal
memory per block.

Proof
m blocks containing bins 1..am

requires m(2 + log a) + 1 + o(m) bits

Lemma: Expected Predecessor Time
When using Elias-Fano coding to store p, the range
of blocks containing the bin of an object x can be
found in expected constant time.

Proof
consider logm MSB

let bin bx have MSBs equal to u

expected size E(Yu) of all bins with MSB u that
are < bx is∑

y∈S

|y | · P(h(y) w/ MSB = u; h(y) < h(x))

≤
∑
y∈S

|y | · P(h(y) w/ MSB = u)

=
1
m

∑
y∈S

|y | = mB̄

m
= B̄

6/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Internal Memory Data Structure

Lemma: Space with Elias-Fano Coding
When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal
memory per block.

Proof
m blocks containing bins 1..am

requires m(2 + log a) + 1 + o(m) bits

Lemma: Expected Predecessor Time
When using Elias-Fano coding to store p, the range
of blocks containing the bin of an object x can be
found in expected constant time.

Proof
consider logm MSB

let bin bx have MSBs equal to u

expected size E(Yu) of all bins with MSB u that
are < bx is∑

y∈S

|y | · P(h(y) w/ MSB = u; h(y) < h(x))

≤
∑
y∈S

|y | · P(h(y) w/ MSB = u)

=
1
m

∑
y∈S

|y | = mB̄

m
= B̄

6/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Internal Memory Data Structure

Lemma: Additional Blocks Loaded
Retrieving an object x of size |x | from a PaCHash
data structure loads ≤ 1 + |x |/B̄+ 1/a consecutive
blocks from the external memory in expectation
(setting |x | = 0 if x is not in the table).

Proof (cnt.)
expected number of blocks overlapped by bin

E(X) = 1 + (E(|bx |)− 1)/B̄

= 1 + |x |/B̄+ 1/a − 1/B̄

P(bin and block border align) = 1/B̄

Proof
expected size of block bx = h(x)

E(|bx |) = |x |+
∑

y∈S,y ̸=x

|y |P(y ∈ bx)

≤ |x |+
∑
y∈S

|y |P(y ∈ bx)

= |x |+
∑
y∈S

|y | · 1
am

= |x |+ B̄

a

7/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Loading Blocks from External Memory

Lemma: Additional Blocks Loaded
Retrieving an object x of size |x | from a PaCHash
data structure loads ≤ 1 + |x |/B̄+ 1/a consecutive
blocks from the external memory in expectation
(setting |x | = 0 if x is not in the table).

Proof (cnt.)
expected number of blocks overlapped by bin

E(X) = 1 + (E(|bx |)− 1)/B̄

= 1 + |x |/B̄+ 1/a − 1/B̄

P(bin and block border align) = 1/B̄

Proof
expected size of block bx = h(x)

E(|bx |) = |x |+
∑

y∈S,y ̸=x

|y |P(y ∈ bx)

≤ |x |+
∑
y∈S

|y |P(y ∈ bx)

= |x |+
∑
y∈S

|y | · 1
am

= |x |+ B̄

a

7/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Loading Blocks from External Memory

Hardware and Software
Intel i7 11700 with base clock speed of 2.5 GHz

1 TB Samsung 980 Pro NVMe SSD

Ubuntu 21.10 with Linux 5.13.0

io_uring for I/O operations

GCC 11.2.0 (-O3 -march=native)

B = 4096 bytes

Objects
here only fixed size

more in the paper

Competitors
LevelDB [Goo21]

RocksDB [Fac21]

SILT [Lim+11].

std::unordered_map

RecSplit [EGV20]

CHD [BBD09; CR+12]

PTHash [PT21]

8/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation

2 4

10−1

100

101

102

Number of objects [Millions]

S
pa

ce
in

te
rn

al
[B

/o
bj

ec
t]

2 4
265

270

275

280

Number of objects [Millions]
S

pa
ce

ex
te

rn
al

[B
/o

bj
ec

t]

2 4

106

107

Number of objects [Millions]

C
on

st
ru

ct
io

n
Th

ro
ug

hp
ut

bu
ffe

re
d

I/O
[O

bj
ec

ts
/s

]

CHD (16-perfect) [BBD09] LevelDB [Goo21] RecSplit [EGV20] SILT (Static part) [Lim+11]
Cuckoo (here) PTHash [PT21] RocksDB [Fac21] Separator (here)
LevelDB (Static part) [Goo21] PaCHash (here) SILT [Lim+11] std::unordered_map

9/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Construction

2 4

0

20

40

60

Q
ue

ry
Th

ro
ug

hp
ut

in
te

rn
al

on
ly

[M
Q

ue
rie

s/
s]

2 4

0

0.2

0.4

0.6

0.8

Q
ue

ry
Th

ro
ug

hp
ut

di
re

ct
I/O

[M
Q

ue
rie

s/
s]

2 4

0.5

1

1.5

2

Q
ue

ry
Th

ro
ug

hp
ut

bu
ffe

re
d

I/O
[M

Q
ue

rie
s/

s]

CHD (16-perfect) [BBD09] LevelDB [Goo21] RecSplit [EGV20] SILT (Static part) [Lim+11]
Cuckoo (here) PTHash [PT21] RocksDB [Fac21] Separator (here)
LevelDB (Static part) [Goo21] PaCHash (here) SILT [Lim+11] std::unordered_map

10/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Queries

300 400 500 600

85%

90%

95%

100%

Average object size [B]

C
uc

ko
o

H
as

hi
ng

M
ax

im
um

lo
ad

fa
ct

or

300 400 500 600

85%

90%

95%

100%

Average object size [B]

S
ep

ar
at

or
H

as
hi

ng
M

ax
im

um
lo

ad
fa

ct
or

Identical size Normal distribution Uniform distribution

11/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Maximum Load Factor of Competitors

Lemma: Space with Succincter
When using Succincter [Pat08] to store p, the index
needs 1.4427 + log(a + 1) + o(1) bits of internal
memory per block.

Entropy Encoding
encode positions directly

compress bit vector using entropy coding

currently very naive Huffman codes on blocks of
size 8, 16, 32, or 64

Structure of Bit Vector
runs of 0s

runs of 10s

sometimes additional 1s

Open Question
better compression using the structure

better as in faster to decompress

at most the size of the entropy encoding

12/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structure

Lemma: Space with Succincter
When using Succincter [Pat08] to store p, the index
needs 1.4427 + log(a + 1) + o(1) bits of internal
memory per block.

Entropy Encoding
encode positions directly

compress bit vector using entropy coding

currently very naive Huffman codes on blocks of
size 8, 16, 32, or 64

Structure of Bit Vector
runs of 0s

runs of 10s

sometimes additional 1s

Open Question
better compression using the structure

better as in faster to decompress

at most the size of the entropy encoding

12/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structure

Lemma: Space with Succincter
When using Succincter [Pat08] to store p, the index
needs 1.4427 + log(a + 1) + o(1) bits of internal
memory per block.

Entropy Encoding
encode positions directly

compress bit vector using entropy coding

currently very naive Huffman codes on blocks of
size 8, 16, 32, or 64

Structure of Bit Vector
runs of 0s

runs of 10s

sometimes additional 1s

Open Question
better compression using the structure

better as in faster to decompress

at most the size of the entropy encoding

12/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structure

Lemma: Space with Succincter
When using Succincter [Pat08] to store p, the index
needs 1.4427 + log(a + 1) + o(1) bits of internal
memory per block.

Entropy Encoding
encode positions directly

compress bit vector using entropy coding

currently very naive Huffman codes on blocks of
size 8, 16, 32, or 64

Structure of Bit Vector
runs of 0s

runs of 10s

sometimes additional 1s

Open Question
better compression using the structure

better as in faster to decompress

at most the size of the entropy encoding

12/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structure

1 8 64

2

4

6

8

10

Parameter a

S
pa

ce
in

te
rn

al
[B

/b
lo

ck
]

1 8 64
0

200

400

600

Parameter a

Q
ue

ry
Th

ro
ug

hp
ut

di
re

ct
I/O

[k
Q

ue
rie

s/
s]

Entropy coded, Twitter
Entropy coded, UniRef
Entropy coded, Wikipedia
Elias-Fano, Twitter
Elias-Fano, UniRef
Elias-Fano, Wikipedia
Succincter

13/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Compressing Internal Memory Data Structure

static hash table for objects of variable size

constant number of bits per EM block

outperforming competitors (variable size)

matching and outperforming competitors (fixed
size)

code available under GPLv3 license

https://github.com/ByteHamster/PaCHash

preprint available in arxiv

This project has received funding from the European
Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).

14/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Conclusion

https://github.com/ByteHamster/PaCHash

[Aza+94] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. “Balanced allocations (extended
abstract)”. In: STOC. ACM, 1994, pages 593–602. DOI: 10.1145/195058.195412.

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682–693. DOI: 10.1007/978-3-642-04128-0_61.

[Cel88] Pedro Celia. External Robin Hood Hashing. Technical report. Computer Science Department,
Indiana University. TR246, 1988.

[CR+12] Davi de Castro Reis, Djamel Belazzougui, Fabiano Cupertino Botelho, and Nivio Ziviani. CMPH - C
Minimal Perfect Hashing Library. http://cmph.sourceforge.net/. 2012.

[DSL11] Biplob K. Debnath, Sudipta Sengupta, and Jin Li. “SkimpyStash: RAM space skimpy key-value store
on flash-based storage”. In: SIGMOD Conference. ACM, 2011, pages 25–36. DOI:
10.1145/1989323.1989327.

15/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/195058.195412
https://doi.org/10.1007/978-3-642-04128-0_61
http://cmph.sourceforge.net/
https://doi.org/10.1145/1989323.1989327

[EGV20] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175–185. DOI:
10.1137/1.9781611976007.14.

[Eli74] Peter Elias. “Efficient Storage and Retrieval by Content and Address of Static Files”. In: J. ACM 21.2
(1974), pages 246–260. DOI: 10.1145/321812.321820.

[Fac21] Facebook. RocksDB. A Persistent Key-Value Store for Fast Storage Environments.
https://rocksdb.org. 2021.

[Fan71] Robert Mario Fano. On the number of bits required to implement an associative memory. Technical
report. Project MAC, Memorandum 61". MIT, Computer Structures Group, 1971.

[GL88] Gaston H. Gonnet and Per-Åke Larson. “External hashing with limited internal storage”. In: J. ACM
35.1 (1988), pages 161–184. DOI: 10.1145/42267.42274.

[Goo21] Google. LevelDB is a Fast Key-Value Storage Library Written at Google.
https://github.com/google/leveldb. 2021.

16/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/321812.321820
https://rocksdb.org
https://doi.org/10.1145/42267.42274
https://github.com/google/leveldb

[JP08] Morten Skaarup Jensen and Rasmus Pagh. “Optimality in External Memory Hashing”. In:
Algorithmica 52.3 (2008), pages 403–411. DOI: 10.1007/s00453-007-9155-x.

[Lar88] Per-Åke Larson. “Linear Hashing with Separators - A Dynamic Hashing Scheme Achieving
One-Access Retrieval”. In: ACM Trans. Database Syst. 13.3 (1988), pages 366–388. DOI:
10.1145/44498.44500.

[Lim+11] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. “SILT: a memory-efficient,
high-performance key-value store”. In: SOSP. ACM, 2011, pages 1–13. DOI:
10.1145/2043556.2043558.

[LK84] Per-Åke Larson and Ajay Kajla. “File Organization: Implementation of a Method Guaranteeing
Retrieval in One Access”. In: Commun. ACM 27.7 (1984), pages 670–677. DOI:
10.1145/358105.358193.

[LR85] Per-Åke Larson and M. V. Ramakrishna. “External Perfect Hashing”. In: SIGMOD Conference. ACM
Press, 1985, pages 190–200. DOI: 10.1145/318898.318916.

17/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Bibliography III

https://doi.org/10.1007/s00453-007-9155-x
https://doi.org/10.1145/44498.44500
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1145/358105.358193
https://doi.org/10.1145/318898.318916

[Pag03] Rasmus Pagh. “Basic External Memory Data Structures”. In: Algorithms for Memory Hierarchies.
Volume 2625. Lecture Notes in Computer Science. Springer, 2003, pages 14–35. DOI:
10.1007/3-540-36574-5_2.

[Pat08] Mihai Patrascu. “Succincter”. In: FOCS. IEEE Computer Society, 2008, pages 305–313. DOI:
10.1109/FOCS.2008.83.

[PT21] Giulio Ermanno Pibiri and Roberto Trani. “PTHash: Revisiting FCH Minimal Perfect Hashing”. In:
SIGIR. ACM, 2021, pages 1339–1348. DOI: 10.1145/3404835.3462849.

[RT89] M. V. Ramakrishna and Walid R. Tout. “Dynamic External Hashing with Guaranteed Single Access
Retrieval”. In: FODO. Volume 367. Lecture Notes in Computer Science. Springer, 1989,
pages 187–201. DOI: 10.1007/3-540-51295-0_127.

18/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Bibliography IV

https://doi.org/10.1007/3-540-36574-5_2
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1007/3-540-51295-0_127

	Appendix

