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hash table for objects of
variable size

storing objects in external
memory

very small internal memory
data structure

retrieve objects in 1 I/O

consecutive I/O (*)

objects of size 256 bytes

in blocks of size 4096 bytes

internal space for one block

Method Ib α I/Os

fix
ed

Larson et al. [LR85] 96 <96 1
SILT SortedStore [Lim+11] 51 100 1
Linear Separator [Lar88] 8 85 1
Separator [GL88; LK84] 6 98 1
Robin Hood [Cel88] 3 99 1.3
Ramakrishna et al. [RT89] 4 80 1
Jensen, Pagh [JP08] 0 80 1.25
Cuckoo [Aza+94; Pag03] 0 <100 2
PaCHash, a = 1 2 100 2*
PaCHash, a = 8 5 100 1.13*

va
ria

bl
e SILT LogStore [Lim+11] 832 100 1

SkimpyStash [DSL11] 32 ≤98 8
PaCHash, a = 1 2 99.95 2.06*
PaCHash, a = 8 5 99.95 1.19*
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1 2 3 4 5 6 7 8 9 10 11 12

2 3 7 9

objects of variable size

hash function h : K → 1..am

EM

sorted objects in EM

first bin (partially) in block

tuning parameter

no fragmentation

store offset in EM
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external memory blocks of size B

bins containing (self-delimiting) objects

offset requiring d = 0..⌈log B⌉ bits

B̄ = B− d remaining per EM block

n objects of total size N

m = N/B̄ blocks in EM

p = ⟨p1, . . . , pm⟩ internal memory

alternatives for different object sizes

d Case Description

0 Identical object sizes, zero
terminated strings and anal-
ogous cases

⌈log(w + 1)⌉ Objects that use variable bit-
length encoding with ≤ w ≤
B bits

⌈log(W/w + 1)⌉ Objects of size divis-
ible by w with W =
min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting
position of a bin
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Query Algorithm

2 3 7 9

b = h(x)

find predecessor pi of b

if pi = b let i = i − 1

find first j with pj > b

Uncompressed Bit Vector
finding predecessor in bit vector in O(1) time

requires m(a + 1) + o(m(a + 1)) bits of space
(uncompressed)

Elias-Fano Coding
using Elias-Fano coding saves space

given k monotonic increasing integers in 1..u
store log k MSBs as bit vector
store log(u/k) LSBs plain
k(2 + log(u/k)) + 1 + o(k) bits in total

predecessor in O(log(u/k)) time

finding range of ones in bit vector
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Lemma: Space with Elias-Fano Coding
When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal
memory per block.

Proof
m blocks containing bins 1..am

requires m(2 + log a) + 1 + o(m) bits

Lemma: Expected Predecessor Time
When using Elias-Fano coding to store p, the range
of blocks containing the bin of an object x can be
found in expected constant time.

Proof
consider logm MSB

let bin bx have MSBs equal to u

expected size E(Yu) of all bins with MSB u that
are < bx is∑

y∈S

|y | · P(h(y) w/ MSB = u; h(y) < h(x))

≤
∑
y∈S

|y | · P(h(y) w/ MSB = u)

=
1
m

∑
y∈S

|y | = mB̄

m
= B̄
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Lemma: Additional Blocks Loaded
Retrieving an object x of size |x | from a PaCHash
data structure loads ≤ 1 + |x |/B̄+ 1/a consecutive
blocks from the external memory in expectation
(setting |x | = 0 if x is not in the table).

Proof (cnt.)
expected number of blocks overlapped by bin

E(X) = 1 + (E(|bx |)− 1)/B̄

= 1 + |x |/B̄+ 1/a − 1/B̄

P(bin and block border align) = 1/B̄

Proof
expected size of block bx = h(x)

E(|bx |) = |x |+
∑

y∈S,y ̸=x

|y |P(y ∈ bx)

≤ |x |+
∑
y∈S

|y |P(y ∈ bx)

= |x |+
∑
y∈S

|y | · 1
am

= |x |+ B̄

a
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Hardware and Software
Intel i7 11700 with base clock speed of 2.5 GHz

1 TB Samsung 980 Pro NVMe SSD

Ubuntu 21.10 with Linux 5.13.0

io_uring for I/O operations

GCC 11.2.0 (-O3 -march=native)

B = 4096 bytes

Objects
here only fixed size

more in the paper

Competitors
LevelDB [Goo21]

RocksDB [Fac21]

SILT [Lim+11].

std::unordered_map

RecSplit [EGV20]

CHD [BBD09; CR+12]

PTHash [PT21]

8/14 2022-09-06 Florian Kurpicz | PaCHash: Packed and Compressed Hash Tables | 1. ACDA Workshop Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation



2 4

10−1

100

101

102

Number of objects [Millions]

S
pa

ce
in

te
rn

al
[B

/o
bj

ec
t]

2 4
265

270

275

280

Number of objects [Millions]
S

pa
ce

ex
te

rn
al

[B
/o

bj
ec

t]

2 4

106

107

Number of objects [Millions]

C
on

st
ru

ct
io

n
Th

ro
ug

hp
ut

bu
ffe

re
d

I/O
[O

bj
ec

ts
/s

]

CHD (16-perfect) [BBD09] LevelDB [Goo21] RecSplit [EGV20] SILT (Static part) [Lim+11]
Cuckoo (here) PTHash [PT21] RocksDB [Fac21] Separator (here)
LevelDB (Static part) [Goo21] PaCHash (here) SILT [Lim+11] std::unordered_map
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Lemma: Space with Succincter
When using Succincter [Pat08] to store p, the index
needs 1.4427 + log(a + 1) + o(1) bits of internal
memory per block.

Entropy Encoding
encode positions directly

compress bit vector using entropy coding

currently very naive Huffman codes on blocks of
size 8, 16, 32, or 64

Structure of Bit Vector
runs of 0s

runs of 10s

sometimes additional 1s

Open Question
better compression using the structure

better as in faster to decompress

at most the size of the entropy encoding
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static hash table for objects of variable size

constant number of bits per EM block

outperforming competitors (variable size)

matching and outperforming competitors (fixed
size)

code available under GPLv3 license

https://github.com/ByteHamster/PaCHash

preprint available in arxiv

This project has received funding from the European
Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).
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