
On the Benefit of Merging Suffix Array

Intervals for Parallel Pattern Matching

Johannes Fischer and Dominik Köppl and Florian Kurpicz

March 4, 2020

71. Workshop über Algorithmen und Komplexität

Notations

• Σ is the alphabet with |Σ| = σ

• $ /∈ Σ and ∀α ∈ Σ : $ <lex α

• T ∈ Σ? ∪ {$} and P ∈ Σ?

• |T | = n and |P| = m

• p is the number of processors

1

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b

and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b

and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Pattern Matching

Pattern Matching

Given a text T of length n and a pattern P of length m, find all

occurrences of P in T .

T = banana$

P1 = b and P2 = a

Sequential Times

Type Query Time Idea

exact O (m) Suffix Tree

k-errors O
(
mkσk max (k , lg lg n) + occ

)
[Lam et al., 2007]

2

Notations

Prefix and Suffix

Pi = T [1..i] is the i-th prefix of T for all i ∈ [1, n]

Si = T [i ..n] is the i-th suffix of T for all i ∈ [1, n]

T = banana$

i 1 2 3 4 5 6 7

Si banana$ anana$ nana$ ana$ na$ a$ $

3

Notations

Prefix and Suffix

Pi = T [1..i] is the i-th prefix of T for all i ∈ [1, n]

Si = T [i ..n] is the i-th suffix of T for all i ∈ [1, n]

T = banana$

i 1 2 3 4 5 6 7

Si banana$ anana$ nana$ ana$ na$ a$ $

3

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P

4

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P

4

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P
4

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P
4

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P
4

The Suffix Array

Suffix Array of T

The SA is a permutation of [1, n] such that for all i ∈ [1, n − 1]:

T [SA [i] ..n] <lex T [SA [i + 1] ..n]

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Suffix Array Interval (SAI) of P

i ∈ I(P) ⇐⇒ T [SA [i] ..SA [i] + |P| − 1] = P
4

The Inverse Suffix Array

Inverse Suffix Array of T

The SA−1 is a permutation of [1, n] such that for all i ∈ [1, n]:

SA−1 [SA [i]] = i

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

SA−1 [i] 5 4 7 3 6 2 1

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Find the rest of the suffix

Ψk [i] = SA−1 [SA [i] + k]

5

The Inverse Suffix Array

Inverse Suffix Array of T

The SA−1 is a permutation of [1, n] such that for all i ∈ [1, n]:

SA−1 [SA [i]] = i

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

SA−1 [i] 5 4 7 3 6 2 1

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Find the rest of the suffix

Ψk [i] = SA−1 [SA [i] + k]

5

The Inverse Suffix Array

Inverse Suffix Array of T

The SA−1 is a permutation of [1, n] such that for all i ∈ [1, n]:

SA−1 [SA [i]] = i

T = banana$

I(a) = [2, 4]

I(n) = [6, 7]

I(an) = [3, 4]

1 2 3 4 5 6 7

SA [i] 7 6 4 2 1 5 3

Ψ1 [i] - 1 6 7 4 2 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

Find the rest of the suffix

Ψk [i] = SA−1 [SA [i] + k]
5

The Suffix Tree

na

naa

SA [i] 7 6 4 2 1 5 3

$ a a a b n n

$ n n a a a

a a n $ n

$ n a a

a n $

$ a

$

b
a
n
a
n
a
$

$

$

$

n
a
$

$

n
a
$

Tree above the Suffix Array

• Nodes cover relevant SAI s

I(a) = [2, 4]

I(n) = [6, 7]

6

Suffix Array Interval Merging

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Problem

How to find the interval gained by merging two suffix array intervals?

Paper Running Time Idea

[Huynh et al., 2006] O (lg n) Binary Search

[This talk] O (lg lg n) Extending [Lam et al., 2007],

Sampling Ψ in y -fast trie

O
(
lgp lg n

)
Parallel Binary Search

7

Suffix Array Interval Merging

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Problem

How to find the interval gained by merging two suffix array intervals?

Paper Running Time Idea

[Huynh et al., 2006] O (lg n) Binary Search

[This talk] O (lg lg n) Extending [Lam et al., 2007],

Sampling Ψ in y -fast trie

O
(
lgp lg n

)
Parallel Binary Search

7

Suffix Array Interval Merging

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Problem

How to find the interval gained by merging two suffix array intervals?

Paper Running Time Idea

[Huynh et al., 2006] O (lg n) Binary Search

[This talk] O (lg lg n) Extending [Lam et al., 2007],

Sampling Ψ in y -fast trie

O
(
lgp lg n

)
Parallel Binary Search

7

Integer Dictionaries

O (n/ lg n)

O (lg n) O (lg n) O (lg n) O (lg n)

.

y-Fast Trie [Willard, 1983]

• Each leaf stores O (lg n)

elements in a binary search

tree

• x-fast trie for O (n/ lg n)

elements

• Prefixes of elements in

O (lg n) hash tables

Find, Predecessor and Successor in O (lg lg n) . . .

• . . . expected time or

• . . . deterministic time with O (n lg lg n) construction time.

8

Integer Dictionaries

O (n/ lg n)

O (lg n) O (lg n) O (lg n) O (lg n)

.

y-Fast Trie [Willard, 1983]

• Each leaf stores O (lg n)

elements in a binary search

tree

• x-fast trie for O (n/ lg n)

elements

• Prefixes of elements in

O (lg n) hash tables

Find, Predecessor and Successor in O (lg lg n) . . .

• . . . expected time or

• . . . deterministic time with O (n lg lg n) construction time. 8

Heavy Path Decomposition

Nodes are

Heavy if they are in the largest subtree

Light otherwise (or if they are the root)

Sample Ψ for each light node

9

Heavy Path Decomposition

Nodes are

Heavy if they are in the largest subtree

Light otherwise (or if they are the root)

Sample Ψ for each light node

9

Sampling Ψ – Light nodes

Given two SAI s I(α) and I(β)

• Find all i ∈ I(α) : Ψ|α| [i] ∈ I(β)

• Ψ|α| [i] is monotonically increasing for all i ∈ I(α)

Sampling for Light Nodes v of I(α) in y-fast trie

Γ (v) :=
{(

Ψ|α|[i] , i
)

: i ≡ 1 (mod lg2 n) ∧ i ∈ I(α)
}

Ψ|α|

10

Sampling Ψ – Light nodes

Given two SAI s I(α) and I(β)

• Find all i ∈ I(α) : Ψ|α| [i] ∈ I(β)

• Ψ|α| [i] is monotonically increasing for all i ∈ I(α)

Sampling for Light Nodes v of I(α) in y-fast trie

Γ (v) :=
{(

Ψ|α|[i] , i
)

: i ≡ 1 (mod lg2 n) ∧ i ∈ I(α)
}

Ψ|α|

10

Sampling Ψ – Light nodes

Given two SAI s I(α) and I(β)

• Find all i ∈ I(α) : Ψ|α| [i] ∈ I(β)

• Ψ|α| [i] is monotonically increasing for all i ∈ I(α)

Sampling for Light Nodes v of I(α) in y-fast trie

Γ (v) :=
{(

Ψ|α|[i] , i
)

: i ≡ 1 (mod lg2 n) ∧ i ∈ I(α)
}

Ψ|α|

10

Sampling Ψ – Light nodes

Given two SAI s I(α) and I(β)

• Find all i ∈ I(α) : Ψ|α| [i] ∈ I(β)

• Ψ|α| [i] is monotonically increasing for all i ∈ I(α)

Sampling for Light Nodes v of I(α) in y-fast trie

Γ (v) :=
{(

Ψ|α|[i] , i
)

: i ≡ 1 (mod lg2 n) ∧ i ∈ I(α)
}

Ψ|α|

10

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Ψ|α|

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time.

11

Merging SAI s – Light nodes

Let v be the light node of I(α) and I(β) = [bβ, eβ]

• If Γ (v) = ∅ → Binary search on < lg2 n elements

• Find jl , jr : bβ ≤ Ψ|α| [jl] and Ψ|α| [jr] ≤ eβ

• Extend jl , jr using binary search on < lg2 n elements

• If either jl or jr does not exist there is no j such that

bβ ≤ Ψ|α| [j] ≤ eβ

Find kl , kr : Ψ|α| [kl] ≤ bβ and eβ ≤ Ψ|α| [kr]

• Shrink kl , kr using binary search on < lg2 n elements

Similar idea for heavy nodes

Lemma

We can merge two SAI s in O (lg lg n) time. 11

Parallelize the Merging

What are we doing to merge two SAI s

Query y -fast tries and binary search

Parallelize these queries

• Binary search requires O
(
lgp n

)
parallel time [Snir 1985]

• Binary search in the x-fast trie

• Static y -fast trie → arrays instead of binary search trees

Lemma

We can merge two SAI s in O
(
lgp lg n

)
parallel time.

12

Parallelize the Merging

What are we doing to merge two SAI s

Query y -fast tries and binary search

Parallelize these queries

• Binary search requires O
(
lgp n

)
parallel time [Snir 1985]

• Binary search in the x-fast trie

• Static y -fast trie → arrays instead of binary search trees

Lemma

We can merge two SAI s in O
(
lgp lg n

)
parallel time.

12

Parallelize the Merging

What are we doing to merge two SAI s

Query y -fast tries and binary search

Parallelize these queries

• Binary search requires O
(
lgp n

)
parallel time [Snir 1985]

• Binary search in the x-fast trie

• Static y -fast trie → arrays instead of binary search trees

Lemma

We can merge two SAI s in O
(
lgp lg n

)
parallel time.

12

Parallel Exact Pattern Matching

• P = P1P2 . . .Pp with |Pi | = m/p

• Compute I(Pi) in O (m/p) time

• Merge SAI s in O
(
lgp lg n

)
time

p

8

4

4

4

4

. . .

2

2

2

2

2

2

2

2

4

4

2

4

2

2

4

2

In the k-th Step

p/2k SAI s → 2k processors

Number of Steps

There are lg p merge steps

Theorem

Parallel exact pattern matching requiresO (m/p + lg lg p lg lg n) time.

13

Parallel Exact Pattern Matching

• P = P1P2 . . .Pp with |Pi | = m/p

• Compute I(Pi) in O (m/p) time

• Merge SAI s in O
(
lgp lg n

)
time

p

8

4

4

4

4

. . .

2

2

2

2

2

2

2

2

4

4

2

4

2

2

4

2

In the k-th Step

p/2k SAI s → 2k processors

Number of Steps

There are lg p merge steps

Theorem

Parallel exact pattern matching requiresO (m/p + lg lg p lg lg n) time.

13

Parallel Exact Pattern Matching

• P = P1P2 . . .Pp with |Pi | = m/p

• Compute I(Pi) in O (m/p) time

• Merge SAI s in O
(
lgp lg n

)
time

p

8

4

4

4

4

. . .

2

2

2

2

2

2

2

2

4

4

2

4

2

2

4

2

In the k-th Step

p/2k SAI s → 2k processors

Number of Steps

There are lg p merge steps

Theorem

Parallel exact pattern matching requiresO (m/p + lg lg p lg lg n) time.

13

Parallel Exact Pattern Matching

• P = P1P2 . . .Pp with |Pi | = m/p

• Compute I(Pi) in O (m/p) time

• Merge SAI s in O
(
lgp lg n

)
time

p

8

4

4

4

4

. . .

2

2

2

2

2

2

2

2

4

4

2

4

2

2

4

2

In the k-th Step

p/2k SAI s → 2k processors

Number of Steps

There are lg p merge steps

Theorem

Parallel exact pattern matching requiresO (m/p + lg lg p lg lg n) time.

13

Parallel Exact Pattern Matching

• P = P1P2 . . .Pp with |Pi | = m/p

• Compute I(Pi) in O (m/p) time

• Merge SAI s in O
(
lgp lg n

)
time

p

8

4

4

4

4

. . .

2

2

2

2

2

2

2

2

4

4

2

4

2

2

4

2

In the k-th Step

p/2k SAI s → 2k processors

Number of Steps

There are lg p merge steps

Theorem

Parallel exact pattern matching requiresO (m/p + lg lg p lg lg n) time.

13

The k-Difference and k-Mismatch Problem

Given a text T of length n and a pattern P of length m . . .

k-Difference Problem

. . . find all occurrences of P ′ in T such that P can be transformed

to P ′ using ≤ k Insert, Change and Delete operations.

k-Mismatch Problem

. . . find all occurrences of P ′ in T such that P can be transformed

to P ′ using ≤ k Change operations.

14

The k-Difference and k-Mismatch Problem

Given a text T of length n and a pattern P of length m . . .

k-Difference Problem

. . . find all occurrences of P ′ in T such that P can be transformed

to P ′ using ≤ k Insert, Change and Delete operations.

k-Mismatch Problem

. . . find all occurrences of P ′ in T such that P can be transformed

to P ′ using ≤ k Change operations.

14

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.

15

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.

15

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.

15

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.

15

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.

15

Preprocessing

Compute SAI s of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the k-th Step

• p/2k left SAI s

• 2km/p right SAI s

Cost of Merging

• There are lg n merge steps

• Merging in O
(
lgp lg n

)
time

P[1..3] P[4..6] P[7..9] P[10..12]

Lemma

The preprocessing requires O (m/p lg p lg lg n) time.
15

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.

16

Solving the 1-Difference and 1-Mismatch Problem

Introducing the Error (Insert, Change or Delete)

• I(P [1..i]) and I(P [i ..n]) are known

• What is an error at position j

Insert I(P [1..j − 1])⊗ I(α)⊗ I(P [j ..n])

Change I(P [1..j − 1])⊗ I(α)⊗ I(P [j + 1..n])

Delete I(P [1..j − 1])⊗ I(P [j + 1..n])

P

j

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved

in O (σm/p · lg lg n + occ) time.
16

Solving the k-Difference and k-Mismatch Problem

Quite similar to k = 1

• The same preprocessing

• Introduce ≤ k errors by merging SAI s

• Use configurations of positions and parallelize those

P ′

Theorem

Approximate parallel pattern matching with ≤ k errors can be solved

in O
(
σkmk/p · lg lg n + occ

)
time.

17

Solving the k-Difference and k-Mismatch Problem

Quite similar to k = 1

• The same preprocessing

• Introduce ≤ k errors by merging SAI s

• Use configurations of positions and parallelize those

P ′

Theorem

Approximate parallel pattern matching with ≤ k errors can be solved

in O
(
σkmk/p · lg lg n + occ

)
time.

17

Problem – Report Occurrence Multiple Times

The Problem: T = aaa$ and P = aba and one error

Change P ′ = aaa

Delete P ′′ = aa

Both P ′ and P ′′ occur at position 1 in T

How do we get O (occ) reporting time?

The Solution

• Report only if found with smallest distance [Huynh et al., 2006]

• Can be parallelized

18

Problem – Report Occurrence Multiple Times

The Problem: T = aaa$ and P = aba and one error

Change P ′ = aaa

Delete P ′′ = aa

Both P ′ and P ′′ occur at position 1 in T

How do we get O (occ) reporting time?

The Solution

• Report only if found with smallest distance [Huynh et al., 2006]

• Can be parallelized

18

Problem – Report Occurrence Multiple Times

The Problem: T = aaa$ and P = aba and one error

Change P ′ = aaa

Delete P ′′ = aa

Both P ′ and P ′′ occur at position 1 in T

How do we get O (occ) reporting time?

The Solution

• Report only if found with smallest distance [Huynh et al., 2006]

• Can be parallelized

18

Conclusion

Things we did

• Presented efficient parallel algorithm for merging SAI s

• Parallelized pattern matching (exact and approximative)

What’s still left

• Has this approach practical use

• Work is not good

Thank You

19

Conclusion

Things we did

• Presented efficient parallel algorithm for merging SAI s

• Parallelized pattern matching (exact and approximative)

What’s still left

• Has this approach practical use

• Work is not good

Thank You

19

Conclusion

Things we did

• Presented efficient parallel algorithm for merging SAI s

• Parallelized pattern matching (exact and approximative)

What’s still left

• Has this approach practical use

• Work is not good

Thank You

19

