On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching

Johannes Fischer and Dominik Köppl and *Florian Kurpicz* March 4, 2020

71. Workshop über Algorithmen und Komplexität

Notations

- Σ is the alphabet with $|\Sigma| = \sigma$
- $\$ $\notin \Sigma$ and $\forall \alpha \in \Sigma : \$ $<_{\mathsf{lex}} \alpha$
- $T \in \Sigma^* \cup \{\$\}$ and $P \in \Sigma^*$
- |T| = n and |P| = m
- *p* is the number of processors

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

 $P_1 = \mathbf{b}$

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

 $P_1 = \mathbf{b}$

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

 $P_1 = \mathbf{b}$ and $P_2 = \mathbf{a}$

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

 $P_1 = \mathbf{b}$ and $P_2 = \mathbf{a}$

Given a text T of length n and a pattern P of length m, find all occurrences of P in T.

T = banana

 $P_1 = \mathbf{b}$ and $P_2 = \mathbf{a}$

Sequential Times

Туре	Query Time	ldea
exact	$\mathcal{O}(m)$	Suffix Tree
k-errors	$\mathcal{O}\left(m^k\sigma^k\max\left(k,\lg\lg n\right)+occ\right)$	[Lam et al., 2007]

Prefix and Suffix

$$P_i = T [1..i] \text{ is the } i\text{-th prefix of } T \text{ for all } i \in [1, n]$$

$$S_i = T [i..n] \text{ is the } i\text{-th suffix of } T \text{ for all } i \in [1, n]$$

Notations

Prefix and Suffix

 $P_i = T [1..i]$ is the *i*-th prefix of T for all $i \in [1, n]$ $S_i = T [i..n]$ is the *i*-th suffix of T for all $i \in [1, n]$

T = banana

i	1	2	3	4	5	6	7
S_i	banana\$	anana\$	nana\$	ana\$	na\$	a\$	\$

Suffix Array of ${\mathcal T}$

The SA is a permutation of [1, n] such that for all $i \in [1, n - 1]$: $T[SA[i]..n] <_{lex} T[SA[i + 1]..n]$

Suffix Array of ${\mathcal T}$

The SA is a permutation of [1, n] such that for all $i \in [1, n - 1]$: $T [SA[i] ...n] <_{lex} T [SA[i + 1] ...n]$

T = banana

	1	2	3	4	5	6	7
SA[i]	7	6	4	2	1	5	3
	\$	a	a	a	b	n	n
		\$	n	n	a	a	a
			a	a	n	\$	n
			\$	n	a		a
				a	n		\$
				\$	a		
					\$		

Suffix Array of T

The SA is a permutation of [1, n] such that for all $i \in [1, n-1]$: $T[SA[i]..n] <_{lex} T[SA[i+1]..n]$

3

7

1 2

5 4 6 SA[i]7 6 5 3 4 2 1 T = banana\$ b а а а n n \$ n n а а а \$ а а n n \$ n а а \$ а \$ а \$

Suffix Array of T

The SA is a permutation of [1, n] such that for all $i \in [1, n - 1]$: $T[SA[i]..n] <_{lex} T[SA[i + 1]..n]$

3 4 5 1 2 6 7 SA[i]7 6 5 3 4 2 1 T = banana\$ b а а а n n \$ I(a) = [2, 4]n n а а а \$ а а n n \$ n а а \$ а \$ а \$

Suffix Array of T

The SA is a permutation of [1, n] such that for all $i \in [1, n - 1]$: $T[SA[i]..n] <_{lex} T[SA[i + 1]..n]$

Suffix Array of ${\mathcal T}$

The SA is a permutation of [1, n] such that for all $i \in [1, n - 1]$: $T[SA[i]..n] <_{lex} T[SA[i + 1]..n]$

Inverse Suffix Array of T

The SA^{-1} is a permutation of [1, n] such that for all $i \in [1, n]$: $SA^{-1}[SA[i]] = i$

Inverse Suffix Array of T

The SA^{-1} is a permutation of [1, n] such that for all $i \in [1, n]$: $SA^{-1}[SA[i]] = i$

T = banana

$$I(a) = [2,4]$$

 $I(n) = [6,7]$
 $I(an) = [3,4]$

	1	2	3	4	5	6	7
SA [i]	7	6	4	2	1	5	3
$SA^{-1}[i]$	5	4	7	3	6	2	1
	\$	a	a	a	b	n	n
		\$	n	n	a	a	a
			a	a	n	\$	n
			\$	n	a		a
				a	n		\$
				\$	a		
					\$		

Inverse Suffix Array of T

The SA^{-1} is a permutation of [1, n] such that for all $i \in [1, n]$: $SA^{-1}[SA[i]] = i$

T = banana

I(a) = [2, 4]I(n) = [6, 7]I(an) = [3, 4]

	1	2	3	4	5	6	7
SA [i]	7	6	4	2	1	5	3
$\Psi^1[i]$	-	1	6	7	4	2	3
	\$	a	a	a	b	n	n
		\$	n	n	a	a	a
			a	a	n	\$	n
			\$	n	a		a
				a	n		\$
				\$	a		
					\$		

Find the rest of the suffix

$$\Psi^{k}\left[i\right] = SA^{-1}\left[SA\left[i\right] + k\right]$$

The Suffix Tree

Tree above the Suffix Array

• Nodes cover relevant SAIs

I(a) = [2, 4]I(n) = [6, 7]

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Problem

How to find the interval gained by merging two suffix array intervals?

The Idea

Find occurrences of subpatterns and merge suffix array intervals

The Problem

How to find the interval gained by merging two suffix array intervals?

Paper	Running Time	ldea
[Huynh et al., 2006]	$\mathcal{O}\left(\lg n\right)$	Binary Search
[This talk]	$\mathcal{O}(\lg \lg n)$	Extending [Lam et al., 2007],
		Sampling Ψ in <i>y</i> -fast trie
	$\mathcal{O}\left(\lg_{p}\lg n\right)$	Parallel Binary Search

Integer Dictionaries

y-Fast Trie [Willard, 1983]

- Each leaf stores O (lg n) elements in a binary search tree
- x-fast trie for \$\mathcal{O}\$ (n/ \lg n) elements
- Prefixes of elements in $O(\lg n)$ hash tables

y-Fast Trie [Willard, 1983]

- Each leaf stores \$\mathcal{O}\$ (lg n) elements in a binary search tree
- *x*-fast trie for $\mathcal{O}(n/\lg n)$ elements
- Prefixes of elements in $\mathcal{O}(\lg n)$ hash tables

FIND, PREDECESSOR and SUCCESSOR in $\mathcal{O}(\lg \lg n) \dots$

- ... expected time or
- ... deterministic time with $\mathcal{O}(n \lg \lg n)$ construction time.

Heavy Path Decomposition

Nodes are

Heavy if they are in the largest subtree Light otherwise (or if they are the root)

Heavy Path Decomposition

Nodes are

Heavy if they are in the largest subtree **Light** otherwise (or if they are the root)

Sample Ψ for each light node

- Find all $i \in \mathcal{I}(\alpha) : \Psi^{|\alpha|}[i] \in \mathcal{I}(\beta)$
- $\Psi^{|\alpha|}[i]$ is monotonically increasing for all $i \in \mathcal{I}(\alpha)$

- Find all $i \in \mathcal{I}(\alpha) : \Psi^{|\alpha|}[i] \in \mathcal{I}(\beta)$
- $\Psi^{|\alpha|}[i]$ is monotonically increasing for all $i \in \mathcal{I}(\alpha)$

Sampling for Light Nodes v of $\mathcal{I}(\alpha)$ in y-fast trie

$$\mathsf{F}(\mathbf{v}) := \left\{ \left(\Psi^{|\alpha|}[i], i \right) : i \equiv 1 \pmod{\mathsf{lg}^2 n} \land i \in \mathcal{I}(\alpha) \right\}$$

- Find all $i \in \mathcal{I}(\alpha) : \Psi^{|\alpha|}[i] \in \mathcal{I}(\beta)$
- $\Psi^{|\alpha|}[i]$ is monotonically increasing for all $i \in \mathcal{I}(\alpha)$

Sampling for Light Nodes v of $\mathcal{I}(\alpha)$ in y-fast trie

$$\mathsf{F}(\mathbf{v}) := \left\{ \left(\Psi^{|\alpha|}[i], i \right) : i \equiv 1 \pmod{\mathsf{lg}^2 n} \land i \in \mathcal{I}(\alpha) \right\}$$

- Find all $i \in \mathcal{I}(\alpha) : \Psi^{|\alpha|}[i] \in \mathcal{I}(\beta)$
- $\Psi^{|\alpha|}[i]$ is monotonically increasing for all $i \in \mathcal{I}(\alpha)$

Sampling for Light Nodes v of $\mathcal{I}(\alpha)$ in y-fast trie

$$\Gamma(v) := \left\{ \left(\Psi^{|\alpha|}[i], i \right) : i \equiv 1 \pmod{\lg^2 n} \land i \in \mathcal{I}(\alpha) \right\}$$

Merging SAIs - Light nodes

Let v be the light node of $\mathcal{I}(\alpha)$ and $\mathcal{I}(\beta) = [\mathbf{b}_{\beta}, \mathbf{e}_{\beta}]$

• If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements

Let v be the light node of $\mathcal{I}(\alpha)$ and $\mathcal{I}(\beta) = [\mathbf{b}_{\beta}, \mathbf{e}_{\beta}]$

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$

Let v be the light node of $\mathcal{I}(\alpha)$ and $\mathcal{I}(\beta) = [\mathbf{b}_{\beta}, \mathbf{e}_{\beta}]$

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements

Let v be the light node of $\mathcal{I}(\alpha)$ and $\mathcal{I}(\beta) = [\mathbf{b}_{\beta}, \mathbf{e}_{\beta}]$

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements
- If either j_i or j_r does not exist there is no j such that

$$\mathbf{b}_{eta} \leq \Psi^{|lpha|}\left[j
ight] \leq \mathbf{e}_{eta}$$

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements
- If either j_i or j_r does not exist there is no j such that

 $\mathbf{b}_{\boldsymbol{eta}} \leq \Psi^{|\alpha|}\left[j
ight] \leq \mathbf{e}_{\boldsymbol{eta}}$

Find $k_l, k_r : \Psi^{|\alpha|}[k_l] \leq b_{\beta}$ and $e_{\beta} \leq \Psi^{|\alpha|}[k_r]$

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements
- If either j_i or j_r does not exist there is no j such that

$$\mathbf{b}_{eta} \leq \Psi^{|lpha|}\left[j
ight] \leq \mathbf{e}_{eta}$$

Find $k_l, k_r : \Psi^{|\alpha|}[k_l] \leq \underline{b}_{\beta}$ and $\underline{e}_{\beta} \leq \Psi^{|\alpha|}[k_r]$

• Shrink k_l, k_r using binary search on $< \lg^2 n$ elements

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements
- If either j_i or j_r does not exist there is no j such that

$$b_{eta} \leq \Psi^{|lpha|}[j] \leq e_{eta}$$

• Shrink k_l, k_r using binary search on $< \lg^2 n$ elements

Similar idea for heavy nodes

- If $\Gamma(v) = \emptyset \rightarrow$ Binary search on $< \lg^2 n$ elements
- Find $j_l, j_r : \mathbf{b}_{\beta} \leq \Psi^{|\alpha|}[j_l]$ and $\Psi^{|\alpha|}[j_r] \leq \mathbf{e}_{\beta}$
- Extend j_l, j_r using binary search on $< \lg^2 n$ elements
- If either j_i or j_r does not exist there is no j such that

$$b_{eta} \leq \Psi^{|lpha|}[j] \leq e_{eta}$$

• Shrink k_l, k_r using binary search on $< \lg^2 n$ elements

Similar idea for heavy nodes

Lemma

We can merge two SAIs in $O(\lg \lg n)$ time.

What are we doing to merge two SA/s

Query *y*-fast tries **and** binary search

What are we doing to merge two SAIs Query y-fast tries and binary search

Parallelize these queries

- Binary search requires $\mathcal{O}(\lg_p n)$ parallel time [Snir 1985]
- Binary search in the x-fast trie
- Static y-fast trie \rightarrow arrays instead of binary search trees

What are we doing to merge two SAIs Query y-fast tries and binary search

Parallelize these queries

- Binary search requires $\mathcal{O}(\lg_p n)$ parallel time [Snir 1985]
- Binary search in the x-fast trie
- Static y-fast trie \rightarrow arrays instead of binary search trees

Lemma

We can merge two SAIs in $\mathcal{O}(\lg_p \lg n)$ parallel time.

- $P = P_1 P_2 \dots P_p$ with $|P_i| = m/p$
- Compute $\mathcal{I}(P_i)$ in $\mathcal{O}(m/p)$ time
- Merge *SAI*s in $O(\lg_p \lg n)$ time

- $P = P_1 P_2 \dots P_p$ with $|P_i| = m/p$
- Compute $\mathcal{I}(P_i)$ in $\mathcal{O}(m/p)$ time
- Merge *SAI*s in $\mathcal{O}(\lg_p \lg n)$ time

- $P = P_1 P_2 \dots P_p$ with $|P_i| = m/p$
- Compute $\mathcal{I}(P_i)$ in $\mathcal{O}(m/p)$ time
- Merge *SAI*s in $\mathcal{O}(\lg_p \lg n)$ time

- $P = P_1 P_2 ... P_p$ with $|P_i| = m/p$
- Compute $\mathcal{I}(P_i)$ in $\mathcal{O}(m/p)$ time
- Merge *SAI*s in $O(\lg_p \lg n)$ time

In the *k*-th Step $p/2^k SAIs \rightarrow 2^k$ processors

Number of Steps There are lg *p* merge steps

- $P = P_1 P_2 \dots P_p$ with $|P_i| = m/p$
- Compute $\mathcal{I}(P_i)$ in $\mathcal{O}(m/p)$ time
- Merge *SAI*s in $\mathcal{O}(\lg_p \lg n)$ time

In the *k*-th Step $p/2^k SAIs \rightarrow 2^k$ processors

Number of Steps There are lg *p* merge steps

Theorem

Parallel exact pattern matching requires $O(m/p + \lg \lg p \lg \lg n)$ time.

Given a text T of length n and a pattern P of length $m \ldots$

k-Difference Problem

... find all occurrences of P' in T such that P can be transformed to P' using $\leq k$ INSERT, CHANGE and DELETE operations.

Given a text T of length n and a pattern P of length $m \ldots$

k-Difference Problem

... find all occurrences of P' in T such that P can be transformed to P' using $\leq k$ INSERT, CHANGE and DELETE operations.

k-Mismatch Problem

... find all occurrences of P' in T such that P can be transformed to P' using $\leq k$ CHANGE operations.

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the *k*-th Step

- $p/2^k$ left SAIs
- $2^k m/p$ right SAIs

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the *k*-th Step

- $p/2^k$ left SAIs
- 2^km/p right SAIs

Cost of Merging

- There are lg *n* merge steps
- Merging in $\mathcal{O}(\lg_p \lg n)$ time

Compute SAIs of all prefixes and suffixes of P

Preprocessing: |P| = 12, p = 4

In the *k*-th Step

- $p/2^k$ left SAIs
- 2^km/p right SAIs

Cost of Merging

- There are lg *n* merge steps
- Merging in $\mathcal{O}(\lg_p \lg n)$ time

Lemma

The preprocessing requires $\mathcal{O}(m/p \lg p \lg \lg n)$ time.

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position j

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$ Change $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j+1..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$ Change $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j+1..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$ Change $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j+1..n])$ Delete $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(P[j+1..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$ Change $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j+1..n])$ Delete $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(P[j+1..n])$

Introducing the Error (Insert, Change or Delete)

- $\mathcal{I}(P[1..i])$ and $\mathcal{I}(P[i..n])$ are known
- What is an error at position *j*

Insert $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j..n])$ Change $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(\alpha) \otimes \mathcal{I}(P[j+1..n])$ Delete $\mathcal{I}(P[1..j-1]) \otimes \mathcal{I}(P[j+1..n])$

Theorem

Approximate parallel pattern matching with ≤ 1 error can be solved in $\mathcal{O}(\sigma m/p \cdot \lg \lg n + occ)$ time.

Quite similar to k = 1

- The same preprocessing
- Introduce $\leq k$ errors by merging *SAI*s
- Use configurations of positions and parallelize those

Quite similar to k = 1

- The same preprocessing
- Introduce $\leq k$ errors by merging *SAI*s
- Use configurations of positions and parallelize those

Theorem

Approximate parallel pattern matching with $\leq k$ errors can be solved in $\mathcal{O}\left(\sigma^k m^k / p \cdot \lg \lg n + occ\right)$ time.

Problem – Report Occurrence Multiple Times

The Problem: T = aaa and P = aba and one error

Change P' = aaa

Delete P'' = aa

Both P' and P'' occur at position 1 in T

Problem – Report Occurrence Multiple Times

The Problem: T = aaa and P = aba and one error

Change P' = aaa

Delete P'' = aa

Both P' and P'' occur at position 1 in T

How do we get $\mathcal{O}(occ)$ reporting time?

Problem – Report Occurrence Multiple Times

The Problem: T = aaa and P = aba and one error

Change P' = aaa

Delete P'' = aa

Both P' and P'' occur at position 1 in T

How do we get $\mathcal{O}(occ)$ reporting time?

The Solution

- Report only if found with smallest distance [Huynh et al., 2006]
- Can be parallelized

Conclusion

Things we did

- Presented efficient parallel algorithm for merging SAIs
- Parallelized pattern matching (exact and approximative)

Conclusion

Things we did

- Presented efficient parallel algorithm for merging SAIs
- Parallelized pattern matching (exact and approximative)

What's still left

- Has this approach practical use
- Work is not good

Conclusion

Things we did

- Presented efficient parallel algorithm for merging SAIs
- Parallelized pattern matching (exact and approximative)

What's still left

- Has this approach practical use
- Work is not good

Thank You