KIT

Karlsruhe Institute of Technology

Faster Wavelet Tree Queries

Data Compression Conference (DCC 2024)

Matteo Ceregini, Florian Kurpicz, and Rossano Venturini

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 567313f compiled at 2024-03-20-18:34

KIT — The Research University in the Helmholtz Association

www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

KIT

Operations on Sequences

Applications
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 .
@ compression

accessan d S € -l- € C t @ computational geometry

@ pattern matching
a ...

211 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Operations on Sequences

Applications

01 2 3 4 5 6 7 8 9 10 11 12 13 14 .
@ compression
accessan d S} S -l- € C t ® computational geometry

\ ® pattern matching
ranks(10) = 3 ...

211 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Operations on Sequences

Applications

0 1 2 3 4 5 6 7 8|9/|10 11 12 13 14 .
@ compression
accessan d ‘ S e -l- e C t ® computational geometry

\ ® pattern matching
ranks(10) = 3 ...
selects(3) =9

211 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03]

accessandselect
000011010101001

acceadeec
000101110

accac || edee nl ssst
011011011 10 0001

a de-facto standard for access, rank, and queries

110101

ssnslt’

® O(log o) query time
® require [Ho(T)]n(1 + o(1)) bits of space

311 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGVO03] ﬂIT

accessandselect Previous Work
000011010101001 ® |ots of work on construction [Bab+15; CNP15;
DFK?20; Din+21; Din+23; EK19; Fue+17; Kan18;
acceadeec

ssnslt ’ LSB17; MNV16; Shu20]

000101110 110101 a [ittle work on queries [CNP15; Fer+07]

accac)iedee] |nlf |ssst Faster Queries @ DCC’24
01101) (1011 10 0001 a “Faster Wavelet Tree Queries ” (this paper)

@ “Another Virtue of Wavelet Forests” (poster)

a de-facto standard for access, rank, and queries
® O(log o) query time
® require [Ho(T)]n(1 + o(1)) bits of space

3 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees Matrices [CNP15]

41

accessandselect
000011010101001

I

acceadeecssnslt
000101110110101

I

accacnledeessst
011011010110001

Z[o] = 9
Z[1] =7
Z[2] = 7

® alternative representation of wavelet trees

a “everything” known for trees applies to matrices

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees Matrices [CNP15]

41

accessandselect
000011010101001

I

acceadeecssnslt
000101110110101

I

accacnledeessst
011011010110001

Z[o] = 9
Z[1] =7
Z[2] = 7

® alternative representation of wavelet trees

a “everything” known for trees applies to matrices

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Construction
® bit vector on each level
® on k-th level symbols represented by k-th MSB
& stably sort sequence using written bit as key
& continue with next level
@ store number of zeros on each level in Z

Institute of Theoretical Informatics, Algorithm Engineering

5/11

Rank Queries

accessandselect
000011010101001

I

acceadeecssnslt
000101110110101

I

accacnledeessst
011011010110001

KIT

Karlsruhe Institute of Technology

rank,, (i)
Z[0] =9 ro=1i, by =0
fork=0,...,¢do

ak=(a >> (L—1—k)) &1
1] =7 offset = ay * Z[K]

bk+1 = bv[k].rank,, (bx) + offset

Ik+1 = bv[k].rank,,(r¢) + offset
22| =7 return 1,1 — by

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

5/11

Rank Queries

accessandselect
000011010101001

I

acceadeecssnslt
000101110110101

I

accacnledeessst
011011010110001

KIT

Karlsruhe Institute of Technology

rank,, (i)
Z[0] =9 ro=1i, by =0
fork=0,...,¢do

ak=(a >> (L—1—k)) &1
1] =7 offset = ay * Z[K]

bk+1 = bv[k].rank,, (bx) + offset

Ik+1 = bv[k].rank,,(r¢) + offset
22| =7 return 1,1 — by

Cache Misses on Each Level
® binary rank and select queries are expensive
@ rank/select data structures not in cache

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

4-Ary Wavelet Matrices

use quad vectors instead of bit vectors accessandselect
® space overhead 3.51 % ~~ 6.25% 000011010101001
000111001110101

l
® [logo /2] levels (uncompressed) accacnledeessst
0110110101160001

halve cache misses for rank/select data
structures

KIT

Karlsruhe Institute of Technology

Co =[0,5,9,11]

C1 — [0, 7]

6/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

4-Ary Wavelet Matrices
® use quad vectors instead of bit vectors accessandselect
= space overhead 3.51 % ~ 6.25% 000011010101001 Co =1[0,5,9,11]
000111001110101
I
accacnledeessst
® [logo/2] levels (uncompressed C;=10,7
[log 7/2] levels (uncompressed) 911011010110001 1 =10,7]

® halve cache misses for rank/select data
structures

® more for rank queries in the tree/matrix
@ path through tree/matrix known at query time

6/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Rank with Additive Approximation (RAA)
Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I][]l

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;si{ti‘oTs‘ \‘N"tT ﬁn‘kﬁl‘) i 0 mod ¢/2fora € [0,3].
o 11 1 1 1

constant time using ©(n/¢) bits of space.

rank, (i) € [rank} (i), rank (i) + €).

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;S'{t"OTS‘ \‘N"tT ﬁn‘kﬁl‘) D 0 mod e/2for o € [0, 3].

constant time using ©(n/¢) bits of space.

rank, (i) € [rank} (i), rank (i) + €).

® to compute rank’(i)

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;si{ti‘oTs‘ \‘N"tT ﬁn‘kﬁl‘) i 0 mod e/2for o € [0, 3].
o 101 1 1 1

constant time using ©(n/¢) bits of space.
® to compute rank[(/)

® letj = |2i/¢] and k = B,.rank; (j)

rank, (i) € [rank} (i), rank (i) + €).

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

7M1

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and € € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ¢/2.

ol LTI I I][]l

Bit vectors B, [1..[2n/¢€]] mark blocks containing
positions with rank, (i) = 0 mod €/2 for o € [0, 3].

Bol [[[T
)

® to compute rank’ (i
® letj = |2i/¢] and k = B,.rank; (j)
® rank,(j-€/2) € [k-€/2,k-€/2+€/2)

Institute of Theoretical Informatics, Algorithm Engineering

7M1

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and € € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ¢/2.

ol LTI I I][]l

Bit vectors B, [1..[2n/¢€]] mark blocks containing
positions with rank, (i) = 0 mod €/2 for o € [0, 3].

Bol [[[T
)

® to compute rank’ (i
® letj = |2i/¢] and k = B,.rank; (j)

® rank,(j-€/2) € [k-€/2,k-€/2+€/2)
® rank, (i) € [k-¢/2,k-€/2+¢)

Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA) A“(IT

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

rank, (i) € [rank((i), rank} (i) + €). Q£ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ U

Bit vectors B, [1..[2n/¢€]] mark blocks containing

positions with rank, (i) = 0 mod ¢/2 for a € [0, 3].
|

)

® to compute rank[(/)

letj = [2i/e] and k = B,,.ranki(j)
ranky(j-€/2) € [k-€/2,k -€/2+ €/2)
rank, (i) € [k-€/2,k-€/2 +¢)
rank? (i) = k - ¢/2

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space. BaH “M ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA) A“(IT

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

rank, (i) € [rank((i), rank} (i) + €). Q£ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ U

Bit vectors B, [1..[2n/¢€]] mark blocks containing

positions with rank, (i) = 0 mod ¢/2 for a € [0, 3].
|

)

® to compute rank[(/)

letj = [2i/e] and k = B,,.ranki(j)
ranky(j-€/2) € [k-€/2,k -€/2+ €/2)
rank, (i) € [k-€/2,k-€/2 +¢)
rank? (i) = k - ¢/2

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space. Ba{ ‘ “M ‘ ‘ M M

Lemma. A RAA data structure for quad vectors
requires Q(n/e) bits of space.

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predicting Cache Lines in the Wavelet Tree

Problem
® let ry be the rank on the k-th level
® RAA does not guarantee that r, € [rf7, 1" +€)
® we can only compute rank; (r ;)
® error could be up to (k — 1)e

811 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

Problem
® let ry be the rank on the k-th level
® RAA does not guarantee that r, € [rf7, 1" +€)
® we can only compute rank; (r ;)
® error could be up to (k — 1)e

Solution
® store position where rank, (i) =0 mod €/2
Bal [L LA LTI 1] 1]

® O(log €) bits per position (offset)
® store in Dy .
@ yse rank/select on bit vector to access offset

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_ be successor of rk_1 in Dy q,

® |et rx be the rank on the k-th level A =min(dk_1 —rZ,,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® ¥ = rank,, (dk_1) — A

® we can only compute rank; (r ;)
® error could be up to (k — 1)e

Solution
® store position where rank, (i) =0 mod €/2
Bal L L[[T P[]
® O(log €) bits per position (offset)
® store in Dy .

@ yse rank/select on bit vector to access offset

811 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_1 be successor of ri_1 in Dy a,

® |et rx be the rank on the k-th level ® A =min(dk—1 — 17 4,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® Y = rank,, (dk—1) — A

® we can only compute rank; (r ;)

® error could be up to (k — 1)e Lemma. At any level k, we have r, € [r7, 17 + €).
Solution

® store position where rank, (i) =0 mod €/2
Bo L[L[[T T

® O(log €) bits per position (offset)

® store in Dy .

@ yse rank/select on bit vector to access offset

811 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_1 be successor of ri_1 in Dy a,

® |et rx be the rank on the k-th level ® A =min(dk—1 — 17 4,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® Y = rank,, (dk—1) — A

® we can only compute rank; (r ;)

® error could be up to (k — 1)e Lemma. At any level k, we have r, € [r7, 17 + €).
Solution ® requires ©((n/elog o) log €) bits of space

® store position where rank,(i) =0 mod €/2 ® problematic if predictor does not fit into cache

BaH “H ‘ ‘ M M ‘ ‘ H ® use hierarchy of predictors

® O(log €) bits per position (offset)
® store in Dy .
@ yse rank/select on bit vector to access offset

811 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Implementations and Experiments

A and Dy, not necessary

error always small enough for o up to 256

prefetch more cache lines

use two levels of predictors

first level with e = 2048

second level with e = 256

help to prefetch blocks and super blocks

911 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Practical Implementations and Experiments
® A and Dy, not necessary Experimental Setup
& error always small enough for o up to 256 ® AMD EPYC 7713
a prefetch more cache lines ® 64KB L1land 64KB L1D per core

a 512KB L21+D per core
m 256 MB L3I+D (32 MB per 8 cores CCX)

® 2TB DDR4 RAM
® Ubuntu 20.04.3 LTS kernel version 5.4.0-155
@ C++: GCC 11.1.0 (-03 -march=native)

® Rust: cargo build -release

use two levels of predictors
first level with e = 2048
second level with e = 256

help to prefetch blocks and super blocks

911 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Experimental Evaluation (Latency)
English
L
g | |
% 0.5
0

input size (log n B) input size (log n B) input size (log n B)

——pasta_wm —e—sdsl fob —=—sds_wm ——sucds —— megfsss —— QWMzsg

10/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Conclusion and Future Work

This Paper

® up to 3 times faster wavelet tree queries

& predictive model for rank queries

This project has received funding from the European Research
3 Council (ERC) under the European Union’s Horizon 2020 research
What S NeXt and innovation programme (grant agreement No. 882500) and
a innovation programme (grant agreement No. 882500), by the PNRR
Compressed wavelet trees ECS00000017 Tuscany Health Ecosystem Spoke 6 “Precision
B use predictive model for other data structures medicine & personaln;ed hgalthcare”, ny the “Alggmhms, Data
Structures and Combinatorics for Machine Learning” (MIUR-PRIN
2017), and by the “Algorithmic Problems and Machine Learning”

Check It Out (MIUR-PRIN 2022).

® https://github.com/rossanoventurini/qwt

11/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

https://github.com/rossanoventurini/qwt

Experimental Evaluation (Throughput)

12/11

rank
throughput (queries/us)

English Common Crawl

KIT

Karlsruhe Institute of Technology

input size (log n B) input size (log n B)

input size (log n B)

——pasta_wm —o—sdsl_fob —=—sdsl_wm —— QWMg;Se

—x— QWMzs¢

Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. “Wavelet
Trees Meet Suffix Trees”. In: SODA. SIAM, 2015, pages 572-591. DOI:
10.1137/1.9781611973730.39.

[CNP15] Francisco Claude, Gonzalo Navarro, and Alberto Ordofiez Pereira. “The Wavelet Matrix: An Efficient
Wavelet Tree for Large Alphabets”. In: Inf. Syst. 47 (2015), pages 15-32. DOI:
10.1016/j.15.2014.06.002.

[DFK20] Patrick Dinklage, Johannes Fischer, and Florian Kurpicz. “Constructing the Wavelet Tree and
Wavelet Matrix in Distributed Memory”. In: ALENEX. SIAM, 2020, pages 214-228. DOI:
10.1137/1.9781611976007.17.

[Din+21] Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian Kurpicz, and Marvin Lébel. “Practical
Wavelet Tree Construction”. In: ACM J. Exp. Algorithmics 26 (2021), 1.8:1-1.8:67. DOI:
10.1145/3457197.

13/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1137/1.9781611976007.17
https://doi.org/10.1145/3457197

KIT

Bibliography Il

[Din+23] Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and Jan-Philipp Tarnowski. “Bit-Parallel
(Compressed) Wavelet Tree Construction”. In: DCC. IEEE, 2023, pages 81-90. DOI:
10.1109/DCC55655.2023.00016.

[EK19] Jonas Ellert and Florian Kurpicz. “Parallel External Memory Wavelet Tree and Wavelet Matrix
Construction”. In: SPIRE. Volume 11811. Lecture Notes in Computer Science. Springer, 2019,
pages 392—406. DOI: 10.1007/978-3-030-32686-9_28.

[Fer+07] Paolo Ferragina, Giovanni Manzini, Veli Makinen, and Gonzalo Navarro. “Compressed
representations of sequences and full-text indexes”. In: ACM Trans. Algorithms 3.2 (2007), page 20.
DOI: 10.1145/1240233.1240243.

[Fue+17] José Fuentes-Sepllveda, Erick Elejalde, Leo Ferres, and Diego Seco. “Parallel construction of
wavelet trees on multicore architectures”. In: Knowl. Inf. Syst. 51.3 (2017), pages 1043—1066.

[GGVO03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. “High-Order Entropy-Compressed Text
Indexes”. In: SODA. ACM/SIAM, 2003, pages 841-850.

14/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1109/DCC55655.2023.00016
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1145/1240233.1240243

Bibliography lli ﬂ(IT

Karlsruhe Institute of Technology

[Kan18] Yusaku Kaneta. “Fast Wavelet Tree Construction in Practice”. In: SPIRE. Volume 11147. Lecture
Notes in Computer Science. Springer, 2018, pages 218-232. DOI:
10.1007/978-3-030-00479-8_18.

[LSB17] Julian Labeit, Julian Shun, and Guy E. Blelloch. “Parallel lightweight wavelet tree, suffix array and
FM-index construction”. In: J. Discrete Algorithms 43 (2017), pages 2—17. DOI:
10.1016/j.jda.2017.04.001.

[MNV16] J. lan Munro, Yakov Nekrich, and Jeffrey Scott Vitter. “Fast construction of wavelet trees”. In: Theor.
Comput. Sci. 638 (2016), pages 91-97. DOI: 10.1016/j.tcs.2015.11.011.

[Shu20] Julian Shun. “Improved parallel construction of wavelet trees and rank/select structures”. In: Inf.
Comput. 273 (2020), page 104516. DOI: 10.1016/j.1c.2020.104516.

15/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.ic.2020.104516

	Appendix

