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Applications
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 .
@ compression

accessan d S € -l- € C t @ computational geometry

@ pattern matching
a ...

211 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering



KIT

Operations on Sequences

Applications

01 2 3 4 5 6 7 8 9 10 11 12 13 14 .
@ compression
accessan d S} S -l- € C t ® computational geometry

\ ® pattern matching
ranks(10) = 3 ...

211 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering



KIT

Operations on Sequences

Applications

0 1 2 3 4 5 6 7 8|9/|10 11 12 13 14 .
@ compression
accessan d ‘ S e -l- e C t ® computational geometry

\ ® pattern matching
ranks(10) = 3 ...
selects(3) =9
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Wavelet Trees [GGV03]
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a de-facto standard for access, rank, and queries
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® O(log o) query time
® require [Ho(T)]n(1 + o(1)) bits of space
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Wavelet Trees [GGVO03] ﬂIT

accessandselect Previous Work
000011010101001 ® |ots of work on construction [Bab+15; CNP15;
DFK?20; Din+21; Din+23; EK19; Fue+17; Kan18;
acceadeec

ssnslt ’ LSB17; MNV16; Shu20]

000101110 110101 a [ittle work on queries [CNP15; Fer+07]

accac)iedee] |nlf |ssst Faster Queries @ DCC’24
01101) (1011 10 0001 a “Faster Wavelet Tree Queries ” (this paper)

@ “Another Virtue of Wavelet Forests” (poster)

a de-facto standard for access, rank, and queries
® O(log o) query time
® require [Ho(T)]n(1 + o(1)) bits of space
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Wavelet Trees Matrices [CNP15]

41
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® alternative representation of wavelet trees

a “everything” known for trees applies to matrices
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Construction
® bit vector on each level
® on k-th level symbols represented by k-th MSB
& stably sort sequence using written bit as key
& continue with next level
@ store number of zeros on each level in Z
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Rank Queries
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rank,, (i)
Z[0] =9 ro=1i, by =0
fork=0,...,¢do

ak=(a >> (L—1—k)) &1
1] =7 offset = ay * Z[K]

bk+1 = bv[k].rank,, (bx) + offset

Ik+1 = bv[k].rank,,(r¢) + offset
22| =7 return 1,1 — by
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Rank Queries
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rank,, (i)
Z[0] =9 ro=1i, by =0
fork=0,...,¢do

ak=(a >> (L—1—k)) &1
1] =7 offset = ay * Z[K]

bk+1 = bv[k].rank,, (bx) + offset

Ik+1 = bv[k].rank,,(r¢) + offset
22| =7 return 1,1 — by

Cache Misses on Each Level
® binary rank and select queries are expensive
@ rank/select data structures not in cache
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4-Ary Wavelet Matrices

use quad vectors instead of bit vectors accessandselect
® space overhead 3.51 % ~~ 6.25% 000011010101001
000111001110101

l
® [logo /2] levels (uncompressed) accacnledeessst
0110110101160001

halve cache misses for rank/select data
structures
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Co =[0,5,9,11]

C1 — [0, 7]
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4-Ary Wavelet Matrices
® use quad vectors instead of bit vectors accessandselect
= space overhead 3.51 % ~ 6.25% 000011010101001 Co =1[0,5,9,11]
000111001110101
I
accacnledeessst
® [logo/2] levels (uncompressed C;=10,7
[log 7/2] levels (uncompressed) 911011010110001 1 =10,7]

® halve cache misses for rank/select data
structures

® more for rank queries in the tree/matrix
@ path through tree/matrix known at query time
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.
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Rank with Additive Approximation (RAA)
Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I ][]l

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I ][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;si{ti‘oTs‘ \‘N"tT ﬁn‘kﬁl‘) i 0 mod ¢/2fora € [0,3].
o 11 1 1 1

constant time using ©(n/¢) bits of space.

rank, (i) € [rank} (i), rank (i) + €).
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I ][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;S'{t"OTS‘ \‘N"tT ﬁn‘kﬁl‘) D 0 mod e/2for o € [0, 3].

constant time using ©(n/¢) bits of space.

rank, (i) € [rank} (i), rank (i) + €).

® to compute rank’(i)
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

ol LTI I I ][]l

Bit vectors B, [1..[2n/¢]] mark blocks containing

n
Lemma. The RAA for quad vectors can be solved in p;si{ti‘oTs‘ \‘N"tT ﬁn‘kﬁl‘) i 0 mod e/2for o € [0, 3].
o 101 1 1 1

constant time using ©(n/¢) bits of space.
® to compute rank[ (/)

® letj = |2i/¢] and k = B,.rank; (j)

rank, (i) € [rank} (i), rank (i) + €).
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Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and € € N.
The RAA for a position i and a symbol « € [0, 3] is

rank, (i) € [rank} (i), rank (i) + €).

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space.
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Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ¢/2.

ol LTI I I ][]l

Bit vectors B, [1..[2n/¢€]] mark blocks containing
positions with rank, (i) = 0 mod €/2 for o € [0, 3].

Bol [ [ [T
)

® to compute rank’ (i
® letj = |2i/¢] and k = B,.rank; (j)
® rank,(j-€/2) € [k-€/2,k-€/2+€/2)
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Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ¢/2.

ol LTI I I ][]l

Bit vectors B, [1..[2n/¢€]] mark blocks containing
positions with rank, (i) = 0 mod €/2 for o € [0, 3].

Bol [ [ [T
)

® to compute rank’ (i
® letj = |2i/¢] and k = B,.rank; (j)

® rank,(j-€/2) € [k-€/2,k-€/2+€/2)
® rank, (i) € [k-¢/2,k-€/2+¢)
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Rank with Additive Approximation (RAA) A“(IT

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

rank, (i) € [rank( (i), rank} (i) + €). Q£ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ U

Bit vectors B, [1..[2n/¢€]] mark blocks containing

positions with rank, (i) = 0 mod ¢/2 for a € [0, 3].
|

)

® to compute rank[ (/)

letj = [2i/e] and k = B,,.ranki(j)
ranky(j-€/2) € [k-€/2,k -€/2+ €/2)
rank, (i) € [k-€/2,k-€/2 +¢)
rank? (i) = k - ¢/2

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space. BaH “M ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Rank with Additive Approximation (RAA) A“(IT

Definition. Let Q[1, n] be a quad vector and ¢ € N. Proof (Sketch). Split quad vector Q[1..n] into blocks
The RAA for a position i and a symbol «: € [0, 3] is of size ¢/2.

rank, (i) € [rank( (i), rank} (i) + €). Q£ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ U

Bit vectors B, [1..[2n/¢€]] mark blocks containing

positions with rank, (i) = 0 mod ¢/2 for a € [0, 3].
|

)

® to compute rank[ (/)

letj = [2i/e] and k = B,,.ranki(j)
ranky(j-€/2) € [k-€/2,k -€/2+ €/2)
rank, (i) € [k-€/2,k-€/2 +¢)
rank? (i) = k - ¢/2

Lemma. The RAA for quad vectors can be solved in
constant time using ©(n/¢) bits of space. Ba{ ‘ “M ‘ ‘ M M

Lemma. A RAA data structure for quad vectors
requires Q(n/e) bits of space.

7M1 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering



KIT

Predicting Cache Lines in the Wavelet Tree

Problem
® let ry be the rank on the k-th level
® RAA does not guarantee that r, € [rf7, 1" +€)
® we can only compute rank; (r ;)
® error could be up to (k — 1)e
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Predicting Cache Lines in the Wavelet Tree

Problem
® let ry be the rank on the k-th level
® RAA does not guarantee that r, € [rf7, 1" +€)
® we can only compute rank; (r ;)
® error could be up to (k — 1)e

Solution
® store position where rank, (i) =0 mod €/2
Bal [L LA LTI 1] 1]

® O(log €) bits per position (offset)
® store in Dy .
@ yse rank/select on bit vector to access offset

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering



KIT

Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_ be successor of rk_1 in Dy q,

® |et rx be the rank on the k-th level A =min(dk_1 —rZ,,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® ¥ = rank,, (dk_1) — A

® we can only compute rank; (r ;)
® error could be up to (k — 1)e

Solution
® store position where rank, (i) =0 mod €/2
Bal L L[ [T P[]
® O(log €) bits per position (offset)
® store in Dy .

@ yse rank/select on bit vector to access offset
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Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_1 be successor of ri_1 in Dy a,

® |et rx be the rank on the k-th level ® A =min(dk—1 — 17 4,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® Y = rank,, (dk—1) — A

® we can only compute rank; (r ;)

® error could be up to (k — 1)e Lemma. At any level k, we have r, € [r7, 17 + €).
Solution

® store position where rank, (i) =0 mod €/2
Bo L[ L[ [T T

® O(log €) bits per position (offset)

® store in Dy .

@ yse rank/select on bit vector to access offset
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Predicting Cache Lines in the Wavelet Tree
Problem ® let dk_1 be successor of ri_1 in Dy a,

® |et rx be the rank on the k-th level ® A =min(dk—1 — 17 4,e—1)

® RAA does not guarantee that r € [, 7 + ¢€) ® Y = rank,, (dk—1) — A

® we can only compute rank; (r ;)

® error could be up to (k — 1)e Lemma. At any level k, we have r, € [r7, 17 + €).
Solution ® requires ©((n/elog o) log €) bits of space

® store position where rank,(i) =0 mod €/2 ® problematic if predictor does not fit into cache

BaH “H ‘ ‘ M M ‘ ‘ H ® use hierarchy of predictors

® O(log €) bits per position (offset)
® store in Dy .
@ yse rank/select on bit vector to access offset
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Practical Implementations and Experiments

A and Dy, not necessary

error always small enough for o up to 256

prefetch more cache lines

use two levels of predictors

first level with e = 2048

second level with e = 256

help to prefetch blocks and super blocks
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Practical Implementations and Experiments
® A and Dy, not necessary Experimental Setup
& error always small enough for o up to 256 ® AMD EPYC 7713
a prefetch more cache lines ® 64KB L1land 64KB L1D per core

a 512KB L21+D per core
m 256 MB L3I+D (32 MB per 8 cores CCX)

® 2TB DDR4 RAM
® Ubuntu 20.04.3 LTS kernel version 5.4.0-155
@ C++: GCC 11.1.0 (-03 -march=native)

® Rust: cargo build -release

use two levels of predictors
first level with e = 2048
second level with e = 256

help to prefetch blocks and super blocks
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Experimental Evaluation (Latency)
English
L
g | |
% 0.5
0

input size (log n B) input size (log n B) input size (log n B)

——pasta_wm —e—sdsl fob —=—sds_wm ——sucds —— megfsss —— QWMzsg
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Conclusion and Future Work

This Paper

® up to 3 times faster wavelet tree queries

& predictive model for rank queries

This project has received funding from the European Research
3 Council (ERC) under the European Union’s Horizon 2020 research
What S NeXt and innovation programme (grant agreement No. 882500) and
a innovation programme (grant agreement No. 882500), by the PNRR
Compressed wavelet trees ECS00000017 Tuscany Health Ecosystem Spoke 6 “Precision
B use predictive model for other data structures medicine & personaln;ed hgalthcare”, ny the “Alggmhms, Data
Structures and Combinatorics for Machine Learning” (MIUR-PRIN
2017), and by the “Algorithmic Problems and Machine Learning”

Check It Out (MIUR-PRIN 2022).

® https://github.com/rossanoventurini/qwt
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Experimental Evaluation (Throughput)
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