Practical Performance of Space Efficient Data Structures for Longest Common Extensions

Patrick Dinklage ^{tv} Johannes Fischer ^{tv} Alexander Herlez ^{tv} Tomasz Kociumaka^O *Florian Kurpicz* ^{tv}

Given: Text T[1, n] over an alphabet of size σ

Wanted: Data Structure that answers

$$\mathsf{lce}_{\mathcal{T}}(i,j) = \mathsf{max}\{oldsymbol{\ell} \geq 0 \colon \mathcal{T}[i,i+oldsymbol{\ell}) = \mathcal{T}[j,j+oldsymbol{\ell})\}$$

Given: Text T[1, n] over an alphabet of size σ

Wanted: Data Structure that answers

$$\mathsf{lce}_{\mathcal{T}}(i,j) = \mathsf{max}\{oldsymbol{\ell} \geq 0 \colon \mathcal{T}[i,i+oldsymbol{\ell}) = \mathcal{T}[j,j+oldsymbol{\ell})\}$$

Given: Text T[1, n] over an alphabet of size σ

Wanted: Data Structure that answers

 $lce_{\mathcal{T}}(i,j) = max\{\ell \geq 0 \colon \mathcal{T}[i,i+\ell) = \mathcal{T}[j,j+\ell)\}$

Given: Text T[1, n] over an alphabet of size σ

Wanted: Data Structure that answers

$$\mathsf{lce}_{\mathcal{T}}(i,j) = \mathsf{max}\{oldsymbol{\ell} \geq 0 \colon \mathcal{T}[i,i+oldsymbol{\ell}) = \mathcal{T}[j,j+oldsymbol{\ell})\}$$

Applications

- (sparse) suffix sorting
- approximate pattern matching

Given: Text T[1, n] over an alphabet of size σ

Wanted: Data Structure that answers

$$\mathsf{lce}_{\mathcal{T}}(i,j) = \mathsf{max}\{oldsymbol{\ell} \geq 0 \colon \mathcal{T}[i,i+oldsymbol{\ell}) = \mathcal{T}[j,j+oldsymbol{\ell})\}$$

Applications

- (sparse) suffix sorting
- approximate pattern matching

- we are interested in practical results
- for related theoretical work see paper

compare character by character

Query Time: O(n)Space: no additional space

Space: $\approx 9n$ additional bytes

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

ABCDABBABCDA

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

A B C D A B B A B C D A

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

A B C D A B B A B C D A

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

A B C D A B B A B C D A

overwrite text with fingerprints (in-place)

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

A B C D A B B A B C D A

overwrite text with fingerprints (in-place)

block
 block
 block
 block

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime q
- $\widehat{\otimes}(i,j) = (\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}) \mod q$

A B C D A B B A B C D A

overwrite text with fingerprints (in-place)

block
 block
 block
 block

Compute LCE with Fingerprints

exponential search: fingerprints mismatch binary search: identify block mismatch

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime *a* $\blacktriangleright \widehat{\otimes}(i,j) = \left(\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}\right) \mod q$

ВСДАВВАВСДА

overwrite text with fingerprints (in-place)

Compute LCE with Fingerprints

exponential search: fingerprints mismatch binary search: identify block mismatch

In Practice

- 8 characters per block (byte alphabet)
- use uint_128 to compute fingerprints ►
- restore text for 256 characters before starting exponential search

Fingerprints [Prezza, SODA'18]

- Karp-Rabin fingerprints for random prime *a* $\blacktriangleright \widehat{\otimes}(i,j) = \left(\sum_{z=i}^{j} T[z] \cdot \sigma^{j-z}\right) \mod q$

ВСДАВВАВСДА

overwrite text with fingerprints (in-place)

Compute LCE with Fingerprints

exponential search: fingerprints mismatch binary search: identify block mismatch

In Practice

- 8 characters per block (byte alphabet)
- use uint_128 to compute fingerprints
- restore text for 256 characters before starting exponential search

String Synchronizing Sets [Kempa & Kociumaka, STOC'19]

- 1. string synchronizing sets in practice
- 2. solving LCE queries
- 3. practical improvements

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < \tau \le n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < \tau \le n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < \tau \le n/2$

Wanted: τ -synchronizing set S of T

Simplified au-Synchronizing Set

Given: Text T[1, n] and $0 < au \leq n/2$

Wanted: τ -synchronizing set S of T

- $|S| = \Theta(n/\tau)$ in practice (on most data sets)
- more complex definition required to obtain this size

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

Text	T' for Posit	ions in S					
	s_1	<i>s</i> 2	<i>s</i> 3	<i>^S</i> <i>S</i> -3	<i>s</i> <i>S</i> -2	$s_{ S -1}$	
Т	\checkmark	\checkmark	 . 	·· 🗸	\checkmark	\checkmark	

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

Consistency & (Simplified) Density Property of S

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

• build black box LCE data structure for T' w.r.t. length in T

Consistency & (Simplified) Density Property of S

- For all $i, j \in [1, n 2\tau + 1]$ we have $T[i, i + 2\tau 1] = T[j, j + 2\tau 1] \Rightarrow i \in S \Leftrightarrow j \in S$
- \blacktriangleright for any au consecutive positions there is at least one position in S

► ranks of $T[s_i, s_i + 3\tau]$ correspond to lexicographical order of $T[s_i, n]$

- compare naively for 3τ characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

- compare naively for 3 au characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

- compare naively for 3τ characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

- compare naively for 3τ characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

General Idea for $lce_T(i, j)$

- compare naively for 3 au characters
- ▶ if equal find successors of *i* and *j* in *S*
- ▶ compute LCE of successors in *T*′

▶ in this example: $lce_T(i, j) = s_1 - i + lce_{T'}(1, |S| - 2)$

- compare naively for 3τ characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

- ▶ in this example: $lce_T(i, j) = s_1 i + lce_{T'}(1, |S| 2)$
- ▶ in practice: we have a very fast static successor data structure

Answering LCE Queries using SSS and ${\cal T}'$

General Idea for $lce_T(i, j)$

- compare naively for 3 au characters
- ▶ if equal find successors of *i* and *j* in *S*
- compute LCE of successors in T'

Prefer Long LCEs for $lce_T(i, j)$

- ▶ find successors *i*′ and *j*′ of *i* and *j* in *S*
- ► compare 2\(\tau\) characters if \(i' i \neq j' j\) and \(i' - i\) characters otherwise

- ▶ in this example: $lce_T(i, j) = s_1 i + lce_{T'}(1, |S| 2)$
- in practice: we have a very fast static successor data structure

Experimental Setup

Algorithms

- our algorithms and data structures
 - naive and ultra_naive
 - our-rk
 - sss_{τ} and sss_{τ}^{pl}
- compared with
 - prezza-rk [Prezza, SODA'18]
 - sada and sct3 [part of SDSL]

Hardware

- two Intel Xeon E5-2640v4 with 2.4 GHz
- 64 GB RAM

Experimental Setup

Algorithms

- our algorithms and data structures
 - naive and ultra_naive
 - our-rk
 - sss_{τ} and sss_{τ}^{pl}
- compared with
 - prezza-rk [Prezza, SODA'18]
 - sada and sct3 [part of SDSL]

Hardware

- two Intel Xeon E5-2640v4 with 2.4 GHz
- 64 GB RAM

Texts

- Pizza & Chili corpus
- regular and repetitive
- ► now
 - dna ($\sigma=16$)
 - \blacktriangleright english.1024MB ($\sigma=239$)
 - cere ($\sigma=6$)
- 9 more in the paper

Evaluation: Construction Time and Memory Consumption

dna

english.1024MB

cere

dna

english.1024MB

15

10

5

cere

dna

english.1024MB

cere

5

15

10

dna

english.1024MB

15

10

Conclusion

- ▶ if slight memory overhead fits into RAM, SSS is the best LCE data structure
- else, in-place fingerprint data structures are best for longer queries
- otherwise, naive scan is the best for all other cases

Conclusion

- ▶ if slight memory overhead fits into RAM, SSS is the best LCE data structure
- else, in-place fingerprint data structures are best for longer queries
- otherwise, naive scan is the best for all other cases
- code available at https://github.com/herlez/lce-test

Conclusion

- ▶ if slight memory overhead fits into RAM, SSS is the best LCE data structure
- else, in-place fingerprint data structures are best for longer queries
- otherwise, naive scan is the best for all other cases
- code available at https://github.com/herlez/lce-test

Thank You