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The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of K3*'s with:
S-Operation: Join an s- and a ¢-node in series.

P-Operation: Join two s- and ¢-nodes in parallel.
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Lemma [Brandstadt et al., 1999]
G is series-parallel <= G is a partial 2-tree.
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> Trees in P [Matula, 1978]
» Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
» Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

1. Proof of NP-hardness if degree is not bounded for all vertices.

2. Polynomial time algorithm for restricted feasible solutions.

Theorem [Gupta & Nishimura 1994]
Sl in SPGs with degree < 4 for all but 2 vertices is in NPC.
SI=%2; NP-complete v and SI <, MCIS
MCIS=3!': NP-hard — now
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Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and ' with |X| = |Y| =n and
a vector b = (by,...,b,) with b, € Ny foralli=1,...,n.
Question: Can X UY be partitioned into disjoint sets A;,..., 4,

each containing one element from X and Y, such that
Doaea,v(@) =0b;foralli=1,...,n?

x[a[s]2fi[4]s] v ([3[1][4]2[3[1]

Yes-Instance

b o[2+1=3][3+3=6]1+1=2[1+3=4[4+2=6|3+4=T]

Definition (NP-complete in the strong sense) [Garey & Johnson 1979]

» NPC in the strong sense <= NPC with unary encoded input.
» NMwTS is NPC in the strong sense.
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Construction of the Reduction

-

Outline for each NMwTS-Instance (X, Y s,b)

» Represent X,Y and b as graphs G and H.
» Size of MCIS indicates type of instance.

Parts of the Graphs
1. Base-Gadgets — Structure of the MCIS.
2. Encoding of the sizes of X,Y and b — Size of the MCIS.
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Definition (k-Maximum Common Subgraph (k-MCS))
Input: k-connected partial k-trees G, H.

Output: Maximum common k-connected subgraph of G and H.

Known Variants of k-MCS in P

1-MCS < Maximum Common Subtree Problem v/ [Matula, 1978]
2-MCIS in SPGs v [Kriege & Mutzel, 2014]



Graph Decomposition
Definition (BC-Tree)
» Tree consisting of a node for each cut vertex and block.

» Distinguish between bridges and non-bridge blocks.

» Edges between nodes if cut vertex is contained in block.




Graph Decomposition
Definition (BC-Tree)
» Tree consisting of a node for each cut vertex and block.

» Distinguish between bridges and non-bridge blocks.

» Edges between nodes if cut vertex is contained in block.




Graph Decomposition
Definition (BC-Tree)
» Tree consisting of a node for each cut vertex and block.

» Distinguish between bridges and non-bridge blocks.
» Edges between nodes if cut vertex is contained in block.

G C
l BI’]

2




Graph Decomposition
Definition (BC-Tree)
» Tree consisting of a node for each cut vertex and block.

» Distinguish between bridges and non-bridge blocks.
» Edges between nodes if cut vertex is contained in block.

G C
l BI’]

2




Graph Decomposition
Definition (BC-Tree)
» Tree consisting of a node for each cut vertex and block.

» Distinguish between bridges and non-bridge blocks.
» Edges between nodes if cut vertex is contained in block.

Cy Co

Bl

» BC-tree is bipartite with respect to cut vertices and blocks.
» Non-bride blocks represent 2-connected SPGs.
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Fewer Restrictions
Definition (Block-and-Bridge Preserving MCS (BBP-MCS))

» Variant of the general common subgraph problem [Schietgat et al., 2007]
» Non-Bridge blocks are only mapped onto non-bridge blocks.

» Bridges are only mapped onto bridges.

o
H3C\N/iN
O/KN N/
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» Only compare blocks of the same type.
» There is an algorithm for 2-MCIS.
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Edmonds-Matula Algorithm for 1-MCS (Sketch)

1. Decompose trees into rooted subtrees.
2. Compute MCS of subtrees (Maximum Weighted Bipartite Matching).
3. Combine partial solutions.

Algorithm for BBP-MCIS (Sketch)

1. Decompose BC-trees into rooted BC-subtrees.
2. Compute MCS of subgraphs represented by subtrees:

> Maximum Weighted Bipartite Matching
» Extended 2-MCIS algorithm — work with cut vertices

3. Combine partial solutions.
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Rooting a BC-Tree

» The root is a vertex in the input graph.

» A subgraph can now be induced by a BC-subtree.

G Cy
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Analysis
Theorem
BBP-MCIS in SPGs can be solved in O (n®), where n = |V(G)| + |V (H)|.

Proof (Sketch)
> (Extended) 2-MCIS can be solved in O (nf).

» Comparison of all blocks at cut vertices in O (n5) — at most O (n2)
pairs of cut vertices and MWBM is solvable in O (ng)

> Total time — O (n®).

Theorem
BBP-MCIS in outerplanar graphs can be solved in O (n?).

Proof (Sketch)

> (Extended) 2-MCIS in outerplanar graphs can be solved in O (n?).
» Comparison of all blocks stays expensive.
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» NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
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Open Questions
» Complexity of MCS in SPGs with bounded degree?
» Edge-Disjoint-Path Problem in SPGs is in NPC. [Nishizeki et al., 2001]
» More general: Complexity of MCS in partial k-trees.

Thank Youl
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