On Maximum Common Subgraph Problems in Series-Parallel Graphs

Nils Kriege Florian Kurpicz Petra Mutzel

Dept. of Computer Science, TU Dortmund

25th International Workshop on Combinatorial Algorithms

Duluth, MN, 15 - 17 October, 2014

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with:

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with:

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with: S-Operation: Join an *s*- and a *t*-node in series.

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with: S-Operation: Join an *s*- and a *t*-node in series.

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with: S-Operation: Join an *s*- and a *t*-node in series.

Th The Problem

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

The Considered Graph Class

Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of $K_2^{s,t}$'s with: S-Operation: Join an *s*- and a *t*-node in series. P-Operation: Join two *s*- and *t*-nodes in parallel.

Lemma [Brandstadt et al., 1999]

G is series-parallel \iff G is a partial 2-tree.

The Complexity of the Problem

The Complexity of the Problem

- ▶ Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]

The Complexity of the Problem P P NPC → Tree Outerplanar Series-Parallel Partial 11-Trees Arbitrary Trees in P [Matula, 1978] Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]

▶ Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

▶ Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

The Complexity of the Problem P P ? NPC → Tree Outerplanar Series-Parallel Partial 11-Trees Trees in P [Matula, 1978]

- ▶ Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- ▶ Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

Arbitrary

The Complexity of the Problem P P P ? $NPC \rightarrow$ Tree Outerplanar Series-Parallel Partial 11-Trees Arbitrary

- ► Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

Ρ

- Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

Theorem [Gupta & Nishimura 1994]

SI in partial k-trees with degree $\leq k+2$ for all but k vertices is in **NPC**.

The Complexity of the Problem Ρ

- Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

Theorem [Gupta & Nishimura 1994]

SI in SPGs with degree ≤ 4 for all but 2 vertices is in NPC.

The Complexity of the Problem Ρ

? $NPC \rightarrow$ P Tree Outerplanar Series-Parallel Partial 11-Trees Arbitrarv

- Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

```
Theorem [Gupta & Nishimura 1994]
SI in SPGs with degree \leq 4 for all but 2 vertices is in NPC.
        SI<sup>\leq4,2</sup>: NP-complete \checkmark and SI \leq_p MCIS
```

Ρ

- Trees in P [Matula, 1978]
- Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]
- Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk

- 1. Proof of NP-hardness if degree is not bounded for all vertices.
- 2. Polynomial time algorithm for restricted feasible solutions.

```
Theorem [Gupta & Nishimura 1994]
SI in SPGs with degree \leq 4 for all but 2 vertices is in NPC.
        SI^{\leq 4,2}: NP-complete \checkmark and SI \leq_n MCIS
    MCIS<sup>\leq3,1</sup>: NP-hard \rightarrow now
```

Kriege, Kurpicz, Mutzel

Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$.

Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$.

Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$.

Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$.

$$Y \ 3 \ 1 \ 4 \ 2 \ 3 \ 1$$

Definition (Numerical Matching with Target Sums (NMwTS)) Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \ldots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \ldots, n$. Question: Can $X \cup Y$ be partitioned into disjoint sets A_1, \ldots, A_n each containing one element from X and Y, such that $\sum_{a \in A_i} v(a) = b_i$ for all $i = 1, \dots, n$? X | 1 | 3 | 2 | 1 | 4 | 3 |Y4 2 3 1

Definition (Numerical Matching with Target Sums (NMwTS)) Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \ldots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \ldots, n$. Question: Can $X \cup Y$ be partitioned into disjoint sets A_1, \ldots, A_n each containing one element from X and Y, such that $\sum_{a \in A_i} v(a) = b_i$ for all $i = 1, \dots, n$? X | 1 | 3 | 2 | 1 | 4 | 3 |Y4 2 3 1

3

2

6

 \vec{b}

4

6

Definition (Numerical Matching with Target Sums (NMwTS)) Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$. Question: Can $X \cup Y$ be partitioned into disjoint sets A_1, \dots, A_n each containing one element from X and Y, such that $\sum_{a \in A_i} v(a) = b_i$ for all $i = 1, \dots, n$?

Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \dots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \dots, n$.

Question: Can $X \cup Y$ be partitioned into disjoint sets A_1, \ldots, A_n each containing one element from X and Y, such that $\sum_{a \in A_i} v(a) = b_i$ for all $i = 1, \ldots, n$?

Definition (Numerical Matching with Target Sums (NMwTS)) Input: Two multisets of integers X and Y with |X| = |Y| = n and a vector $\vec{b} = \langle b_1, \ldots, b_n \rangle$ with $b_i \in \mathbb{N}_0$ for all $i = 1, \ldots, n$. Question: Can $X \cup Y$ be partitioned into disjoint sets A_1, \ldots, A_n each containing one element from X and Y, such that $\sum_{a \in A_i} v(a) = b_i$ for all $i = 1, \dots, n$? 1 3 X3 |2| $4 \mid$ Y23 4

 \vec{b} 2+1=3 3+3=6 1+1=2 1+3=4 4+2=6 3+4=7

Definition (NP-complete in the strong sense) [Garey & Johnson 1979]
▶ NPC in the strong sense ↔ NPC with unary encoded input.

Definition (NP-complete in the strong sense) [Garey & Johnson 1979]

- ▶ NPC in the strong sense ↔ NPC with unary encoded input.
- ► NMwTS is **NPC** in the strong sense.

Construction of the Reduction

Outline for each NMwTS-Instance (X, Y, s, \vec{b})

- Represent X, Y and \vec{b} as graphs G and H.
- ► Size of MCIS indicates type of instance.

Construction of the Reduction

Outline for each NMwTS-Instance (X, Y, s, \vec{b})

- Represent X, Y and \vec{b} as graphs G and H.
- Size of MCIS indicates type of instance.

Parts of the Graphs

- 1. Base-Gadgets \rightarrow Structure of the MCIS.
- 2. Encoding of the sizes of X,Y and $\vec{b} \rightarrow$ Size of the MCIS.

• \bar{x}, \bar{y} with unbounded degree.

• \bar{x}, \bar{y} with unbounded degree.

• Cycles: $2\sum_{z \in X \cup Y} v(z) + 2$ vertices.

Encode the Sizes of \boldsymbol{X} and \boldsymbol{Y}

Encode the Sizes of \vec{b}

- Entries of b
- +1 to compensate the separating paths

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

 (X,Y,s,\vec{b}) is a Yes-Instance $\iff \mathsf{MCIS}(G,H) = |V(G)| - 2n + 1$ = |V(H)| - 2n + 1

▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

Theorem

MCIS in SPGs with degree ≤ 3 for all but 1 vertex is **NP**-hard.

- ▶ $|V(G)| = |V(H)| \rightarrow \text{Base-Gadgets & Encoding.}$
- n-1 missing vertices in the base-gadget.
- n missing vertices in the separating paths.

A Polynomial Time Algorithm

Definition (k-Maximum Common Subgraph (k-MCS))

Input: *k*-connected partial *k*-trees *G*, *H*.

Output: Maximum common k-connected subgraph of G and H.

A Polynomial Time Algorithm

Definition (k-Maximum Common Subgraph (k-MCS))

Input: k-connected partial k-trees G, H.

Output: Maximum common k-connected subgraph of G and H.

Known Variants of k-MCS in P

1-MCS ⇔ Maximum Common Subtree Problem ✓ [Matula, 1978] 2-MCIS in SPGs ✓ [Kriege & Mutzel, 2014]

Graph Decomposition

Definition (BC-Tree)

- Tree consisting of a node for each cut vertex and block.
- Distinguish between bridges and non-bridge blocks.
- Edges between nodes if cut vertex is contained in block.

Graph Decomposition

Definition (BC-Tree)

- Tree consisting of a node for each cut vertex and block.
- Distinguish between bridges and non-bridge blocks.
- Edges between nodes if cut vertex is contained in block.

Graph Decomposition

Definition (BC-Tree)

- Tree consisting of a node for each cut vertex and block.
- Distinguish between bridges and non-bridge blocks.
- Edges between nodes if cut vertex is contained in block.

Graph Decomposition

Definition (BC-Tree)

- Tree consisting of a node for each cut vertex and block.
- Distinguish between bridges and non-bridge blocks.
- Edges between nodes if cut vertex is contained in block.

Graph Decomposition

Definition (BC-Tree)

- Tree consisting of a node for each cut vertex and block.
- Distinguish between bridges and non-bridge blocks.
- Edges between nodes if cut vertex is contained in block.

- BC-tree is bipartite with respect to cut vertices and blocks.
- ▶ Non-bride blocks represent 2-connected SPGs.

Fewer Restrictions

Definition (Block-and-Bridge Preserving MCS (BBP-MCS))

- ► Variant of the general common subgraph problem [Schietgat et al., 2007]
- Non-Bridge blocks are only mapped onto non-bridge blocks.
- Bridges are only mapped onto bridges.

Fewer Restrictions

Definition (Block-and-Bridge Preserving MCS (BBP-MCS))

- ▶ Variant of the general common subgraph problem [Schietgat et al., 2007]
- Non-Bridge blocks are only mapped onto non-bridge blocks.
- Bridges are only mapped onto bridges.

Fewer Restrictions

Definition (Block-and-Bridge Preserving MCS (BBP-MCS))

- ▶ Variant of the general common subgraph problem [Schietgat et al., 2007]
- Non-Bridge blocks are only mapped onto non-bridge blocks.
- Bridges are only mapped onto bridges.

- Only compare blocks of the same type.
- ► There is an algorithm for 2-MCIS.

Idea of the Algorithm

Edmonds-Matula Algorithm for 1-MCS (Sketch)

- 1. Decompose trees into rooted subtrees.
- 2. Compute MCS of subtrees (Maximum Weighted Bipartite Matching).
- 3. Combine partial solutions.

Idea of the Algorithm

Edmonds-Matula Algorithm for 1-MCS (Sketch)

- 1. Decompose trees into rooted subtrees.
- 2. Compute MCS of subtrees (Maximum Weighted Bipartite Matching).
- 3. Combine partial solutions.

Algorithm for BBP-MCIS (Sketch)

- 1. Decompose BC-trees into rooted BC-subtrees.
- 2. Compute MCS of subgraphs represented by subtrees:
 - Maximum Weighted Bipartite Matching
 - \blacktriangleright Extended 2-MCIS algorithm \rightarrow work with cut vertices
- 3. Combine partial solutions.

The root is a vertex in the input graph.

A subgraph can now be induced by a BC-subtree.

- ▶ The root is a vertex in the input graph.
 - A subgraph can now be induced by a BC-subtree.

- The root is a vertex in the input graph.
 - A subgraph can now be induced by a BC-subtree.

- The root is a vertex in the input graph.
- A subgraph can now be induced by a BC-subtree.

Theorem

BBP-MCIS in SPGs can be solved in $\mathcal{O}(n^6)$, where n = |V(G)| + |V(H)|.

Theorem

BBP-MCIS in SPGs can be solved in $\mathcal{O}(n^6)$, where n = |V(G)| + |V(H)|.

Proof (Sketch)

- (Extended) 2-MCIS can be solved in $\mathcal{O}(n^6)$.
- ► Comparison of all blocks at cut vertices in $\mathcal{O}(n^5) \rightarrow \text{at most } \mathcal{O}(n^2)$ pairs of cut vertices and MWBM is solvable in $\mathcal{O}(n^3)$.
- ▶ Total time $\rightarrow \mathcal{O}(n^6)$.

Theorem

BBP-MCIS in SPGs can be solved in $\mathcal{O}(n^6)$, where n = |V(G)| + |V(H)|.

Proof (Sketch)

- (Extended) 2-MCIS can be solved in $\mathcal{O}(n^6)$.
- ► Comparison of all blocks at cut vertices in $\mathcal{O}(n^5) \rightarrow \text{at most } \mathcal{O}(n^2)$ pairs of cut vertices and MWBM is solvable in $\mathcal{O}(n^3)$.

• Total time
$$ightarrow \mathcal{O}\left(n^{6}
ight)$$
.

Theorem

BBP-MCIS in outerplanar graphs can be solved in $\mathcal{O}\left(n^{5}\right)$.

Theorem

BBP-MCIS in SPGs can be solved in $\mathcal{O}(n^6)$, where n = |V(G)| + |V(H)|.

Proof (Sketch)

- (Extended) 2-MCIS can be solved in $\mathcal{O}(n^6)$.
- ► Comparison of all blocks at cut vertices in $\mathcal{O}(n^5) \rightarrow \text{at most } \mathcal{O}(n^2)$ pairs of cut vertices and MWBM is solvable in $\mathcal{O}(n^3)$.

• Total time
$$ightarrow \mathcal{O}\left(n^{6}
ight)$$
.

Theorem

BBP-MCIS in outerplanar graphs can be solved in $\mathcal{O}\left(n^{5}\right)$.

Proof (Sketch)

- (Extended) 2-MCIS in outerplanar graphs can be solved in $\mathcal{O}(n^3)$.
- Comparison of all blocks stays expensive.

- **NP**-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

Open Questions

- Complexity of MCS in SPGs with bounded degree?
- Edge-Disjoint-Path Problem in SPGs is in NPC. [Nishizeki et al., 2001]

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- ▶ BBP-MCIS in SPGs can be solved in polynomial time.

Open Questions

- Complexity of MCS in SPGs with bounded degree?
- Edge-Disjoint-Path Problem in SPGs is in NPC. [Nishizeki et al., 2001]
- ▶ More general: Complexity of MCS in partial *k*-trees.

- ▶ NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
- BBP-MCIS in SPGs can be solved in polynomial time.

Open Questions

- Complexity of MCS in SPGs with bounded degree?
- Edge-Disjoint-Path Problem in SPGs is in NPC. [Nishizeki et al., 2001]
- ▶ More general: Complexity of MCS in partial *k*-trees.

Thank You!