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Maximum Common Subgraph Problem
Definition (Maximum Common Induced Subgraph (MCIS))

Input: Graphs G, H.
Output: Maximum number of vertices in a connected graph that is

isomorphic to an induced subgraph of G and H.
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he
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j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.
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Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.

P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.

P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.

P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Considered Graph Class
Definition (Series-Parallel Graphs (SPGs))

In a SPG each block can be constructed from a finite set of Ks,t
2 ’s with:

S-Operation: Join an s- and a t-node in series.
P-Operation: Join two s- and t-nodes in parallel.

t
s

s
s s

t
s tt

t

s
t

ts

t s

s
s s

tt

t

t

s

t

t

Lemma [Brandstadt et al., 1999]

G is series-parallel ⇐⇒ G is a partial 2-tree.

Kriege, Kurpicz, Mutzel MCS in Series-Parallel Graphs 3



T
he

Problem
j

The Complexity of the Problem

Tree Outerplanar Series-Parallel Partial 11-Trees Arbitrary

?

I Trees in P [Matula, 1978]

I Outerplanar with bounded degree in P [Akutsu & Tamura, 2013]

I Partial 11-trees with bounded degree in NPC [Akutsu & Tamura, 2013]

In this Talk
1. Proof of NP-hardness if degree is not bounded for all vertices.
2. Polynomial time algorithm for restricted feasible solutions.

Theorem [Gupta & Nishimura 1994]

SI in partial k-trees with degree ≤ k + 2 for all but k vertices is in NPC.

SI≤4,2: NP-complete 3 and SI ≤p MCIS
MCIS≤3,1: NP-hard → now
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P-H

ardnessj

Reduction from the . . .
Definition (Numerical Matching with Target Sums (NMwTS))

Input: Two multisets of integers X and Y with |X| = |Y | = n and
a vector ~b = 〈b1, . . . , bn〉 with bi ∈ N0 for all i = 1, . . . , n.

Question: Can X ∪ Y be partitioned into disjoint sets A1, . . . , An

each containing one element from X and Y , such that∑
a∈Ai

v (a) = bi for all i = 1, . . . , n?

1 3 2 1 4 3 3 1 4 2 3 1X Y

2 + 1 =3 3 + 3 =6 1 + 1 =2 1 + 3 =4 4 + 2 =6 3 + 4 =7~b ~b

Yes-Instance

Definition (NP-complete in the strong sense) [Garey & Johnson 1979]

I NPC in the strong sense ⇐⇒ NPC with unary encoded input.

I NMwTS is NPC in the strong sense.
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Construction of the Reduction
Outline for each NMwTS-Instance (X, Y, s,~b)

I Represent X,Y and ~b as graphs G and H.
I Size of MCIS indicates type of instance.

Parts of the Graphs
1. Base-Gadgets → Structure of the MCIS.
2. Encoding of the sizes of X,Y and ~b → Size of the MCIS.
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The Base-Gadgets of G and H

x̄

x̄ x̄ x̄x̄

. . .

. . .

x̄ x̄ x̄

ȳ

ȳ ȳ ȳȳ

. . .

. . .

ȳ ȳ ȳ

I x̄, ȳ with unbounded degree.
I Cycles: 2

∑
z∈X∪Y v(z) + 2

vertices.

I Anchor vertices and paths.
I n chordsless cycles and n

cycles containing chords.
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ȳ ȳ ȳȳ
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Encode the Sizes of X and Y
x̄

x̄

x̄

x̄

x̄

x̄

x̄

3v(xn) 3v(yn)3

..
.

..
.

I Values v(xi) and v(yi)

I Separating paths
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Encode the Sizes of ~b
ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

ȳ

..
.

..
.

3 (bn + 1)

I Entries of ~b
I +1 to compensate the

separating paths
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The Reduction (Sketch)
Theorem
MCIS in SPGs with degree ≤ 3 for all but 1 vertex is NP-hard.

(X,Y, s,~b) is a Yes-Instance ⇐⇒ MCIS(G,H) = |V (G)| − 2n + 1

= |V (H)| − 2n + 1

I |V (G)| = |V (H)| → Base-Gadgets & Encoding.
I n− 1 missing vertices in the base-gadget.
I n missing vertices in the separating paths.
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A Polynomial Time Algorithm
Definition (k-Maximum Common Subgraph (k-MCS))

Input: k-connected partial k-trees G, H.
Output: Maximum common k-connected subgraph of G and H.

Known Variants of k-MCS in P
1-MCS ⇔ Maximum Common Subtree Problem 3 [Matula, 1978]

2-MCIS in SPGs 3 [Kriege & Mutzel, 2014]
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Graph Decomposition
Definition (BC-Tree)

I Tree consisting of a node for each cut vertex and block.
I Distinguish between bridges and non-bridge blocks.
I Edges between nodes if cut vertex is contained in block.

Bl1 Bl2 Bl3

Br1

Br2

C1 C2

C3

Bl1

C1 Br1 C2

Bl2

Bl3 C3

Br2

I BC-tree is bipartite with respect to cut vertices and blocks.
I Non-bride blocks represent 2-connected SPGs.
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Fewer Restrictions
Definition (Block-and-Bridge Preserving MCS (BBP-MCS))

I Variant of the general common subgraph problem [Schietgat et al., 2007]

I Non-Bridge blocks are only mapped onto non-bridge blocks.
I Bridges are only mapped onto bridges.

O N

CH3

N

N

CH3
O

N
CH3

I Only compare blocks of the same type.
I There is an algorithm for 2-MCIS.
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Idea of the Algorithm
Edmonds-Matula Algorithm for 1-MCS (Sketch)
1. Decompose trees into rooted subtrees.
2. Compute MCS of subtrees (Maximum Weighted Bipartite Matching).
3. Combine partial solutions.

Algorithm for BBP-MCIS (Sketch)
1. Decompose BC-trees into rooted BC-subtrees.
2. Compute MCS of subgraphs represented by subtrees:

I Maximum Weighted Bipartite Matching
I Extended 2-MCIS algorithm → work with cut vertices

3. Combine partial solutions.
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Rooting a BC-Tree
I The root is a vertex in the input graph.
I A subgraph can now be induced by a BC-subtree.

Bl1 Bl2 Bl3

Br1

Br2

C1 C2

C3

Bl1

C1 Br1 C2

Bl2

Bl3 C3

Br2
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Analysis
Theorem
BBP-MCIS in SPGs can be solved in O

(
n6
)
, where n = |V (G)|+ |V (H)|.

Proof (Sketch)
I (Extended) 2-MCIS can be solved in O

(
n6
)
.

I Comparison of all blocks at cut vertices in O
(
n5
)
→ at most O

(
n2
)

pairs of cut vertices and MWBM is solvable in O
(
n3
)
.

I Total time → O
(
n6
)
.

Theorem
BBP-MCIS in outerplanar graphs can be solved in O

(
n5
)
.

Proof (Sketch)
I (Extended) 2-MCIS in outerplanar graphs can be solved in O

(
n3
)
.

I Comparison of all blocks stays expensive.
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jConclusion & Future Work
I NP-hardness of MCIS in SPGs with one vertex of unbounded degree.
I BBP-MCIS in SPGs can be solved in polynomial time.

Tree Outerplanar Series-Parallel Partial 11-Trees Arbitrary

?

Open Questions
I Complexity of MCS in SPGs with bounded degree?

I Edge-Disjoint-Path Problem in SPGs is in NPC. [Nishizeki et al., 2001]

I More general: Complexity of MCS in partial k-trees.

Thank You!
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