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bit vector is a text over the alphabet {0, 1}
in practice space is very important

64 bits are stored in one 64-bit word
don’t use std::vector<bool>

applications require rank and select support

Elias-Fano coding
compact representation of sorted sequences
predecessor and successor support

succinct tree representations
represent trees with n nodes in 2n bits
navigation in trees with additional o(n) bits

wavelet trees
rank and select support for arbitrary alphabets
building block for compressed text indices

block trees
wavelet tree alternative that is better
compressible

. . .
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rankα(i) # of αs before position i

selectα(j) position of j-th α

block

# of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2
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block

# of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

Block-Based Rank
store number of 1s for
(super-)blocks

query: sum up values in
(super-)blocks for position
and scan bit vector in block

Block-Based Select
same as block-based rank

query: identify block and
scan bit vector in block

Sample-Based Select
store sampled positions for

query: jump to sample and
scan bit vector
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super-block (L0): 232 bits

block (L1): 2048 bits

sub-block (L2): 512 bits

sub-blocks store popcount

last sub-block in block not needed
� use next block instead

L1+L2 together 64 bits

L1 L2 L2 L2

32 Bit 10 Bit 10 Bit 10 Bit

finding sub-block by scanning

wasting two bits for every 2048 bits in the bit
vector
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super-block (L0): 244 bits

block (L1): 4096 bits

sub-block (L2): 512 bits

sub-blocks store number of 1 w.r.t. block

last sub-block is not needed
� use next block instead

L1+L2 together in 128 bits

L2 L2 L2 L2 L2 L2 L2 L1

12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 44 Bit

finding sub-block by scanning,

uniform binary search, or

SIMD
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L1+L2 together in 128 bits

L2 L2 L2 L2 L2 L2 L2 L1

12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 12 Bit 44 Bit

all searches on array of same length

same behavior for every search

same number of comparisons for every
sub-block
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12 bits per sub-block

two sub-blocks share a byte

either four MSBs or LSBs in
shared byte

finally every sub-block is
contained in 16 bits

fits in 128 bits

identify sub-block using SIMD
� _mm_cmpgt_epi16
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use 16 bits for each sub-block

even faster access to sub-blocks

more sub-blocks per block

faster rank queries

very slow select queries
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AMD Ryzen 9 3950X (3.5 GHz)

Ubuntu 20.04.2 LTS

GCC 10.2 (-03, -march=native, and -DNDEBUG)

bit vectors filled uniformly at random

adversarial distribution (99 % of the k % set bits
are set in the last k % of the bit vector)

same bit vector for all data structures

different bit vector for each run

random queries are precomputed for each run

100 million queries

average of three runs

reproducibility artifacts available
https://github.com/pasta-toolbox/bit_vector_

experiments
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Name n = 1 · 109 2 · 109 4 · 109 8 · 109 16 · 109 32 · 109

cs-poppy [ZAK13] 3.32 3.32 3.32
cs-poppy-fs [PBJ17] 3.32 3.32 3.32
pasta-poppy 3.58 3.58 3.58 3.58 3.58 3.58
pasta-flatSIMD 3.58 3.58 3.58 3.58 3.58 3.58

pasta-wide 10.16 10.17 10.16 10.16 10.16 10.16
rank9select [Vig08] 56.25 56.25 56.25 56.25 56.25 56.25
sdsl-v [Gog+14] 25.00 25.00 25.00 25.00 25.00 25.00
sdsl-v5 [Gog+14] 6.25 6.25 6.25 6.25 6.25 6.25

sdsl-mcl [Gog+14] 18.51 18.52 18.53 18.54 18.55 18.56
simple-select0 [Vig08] 8.72 8.72 8.72 8.72 8.72 8.72
simple-select1 [Vig08] 9.88 9.88 9.88 9.88 9.88 9.88
simple-select2 [Vig08] 12.21 12.20 12.20 12.20 12.20 12.20
simple-select3 [Vig08] 16.85 16.85 16.84 16.84 16.84 16.84
simple-selecth [Vig08] 15.62 15.63 15.63 15.63 15.63 15.63
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pasta::BitVector bv(1000, 0);

for (size_t i = 0; i < bv.size(); ++i) {

if (i % 2 == 0) { bv[i] = 1; }

}

for (auto it = bv.begin(); it != bv.end(); ++it) {

std::cout << ((*it == true) ? ’1’ : ’0’);

}

std::cout << std::endl;

pasta::RankSelect rs(bv);

std::cout << rs.rank0(250) << ", " << rs.rank1(250) << std::endl;

std::cout << rs.select0(250) << ", " << rs.rank1(250) << std::endl;
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compact rank and select data structure

SIMD useful for encoding small integers in
computer words

very fast construction

select0 and select1 queries w/o doubling space

code available under GPLv3 license
https://github.com/pasta-toolbox/bit_vector

easy to use header-only library

future work: compress bit vector

This project has received funding from the European
Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).
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