

Advanced Data Structures

Lecture 03: Dynamic Bit Vectors and Succinct Trees

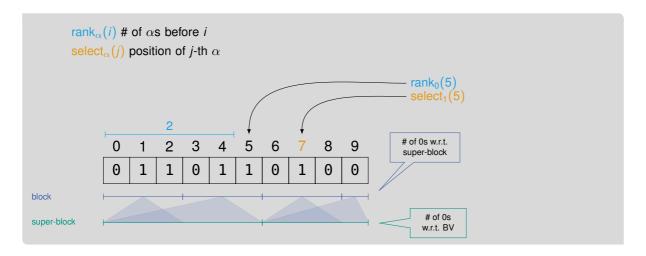
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ⊚⊕⊚: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-15-16:36

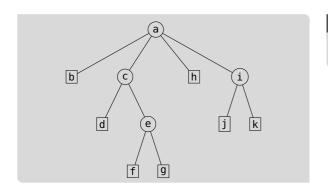
PINGO

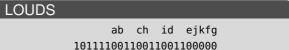
https://pingo.scc.kit.edu/165540

Recap: Rank Queries on Bit Vectors

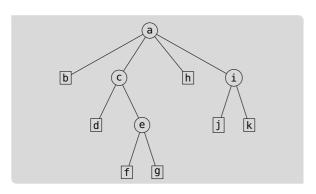


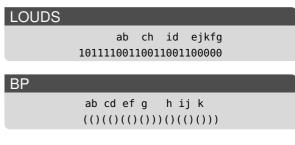
Recap: Succinct Trees



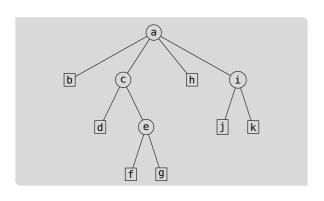


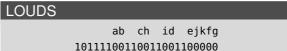
Recap: Succinct Trees





Recap: Succinct Trees





- insert(BV, i, b) inserts b between BV[i − 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0

- insert(BV, i, b) inserts b between BV[i − 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work

- insert(BV, i, b) inserts b between BV[i 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work
- **10011010001111**
- 01001101001111

- insert(BV, i, b) inserts b between BV[i 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work
- **10011010001111**
- 01001101001111

- what update time do we want to have?
 - O(n)
 - O(log n)
 - O(1)

- insert(BV, i, b) inserts b between BV[i 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work
- **10011010001111**
- 01001101001111

- what update time do we want to have?
 - O(n)
 - O(log n)
 - O(1)
- is doubling the length sufficient of amortized analysis PINGO

- insert(BV, i, b) inserts b between BV[i-1]and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work
- 10011010001111
- 01001101001111

- what update time do we want to have?
 - O(n)
 - $O(\log n)$
 - O(1)
- is doubling the length sufficient amortized analysis PINGO
- why not using a linked list? PINGO

Dynamic Bit Vector Operations

- insert(BV, i, b) inserts b between BV[i 1] and BV[i]
- delete(BV, i) deletes BV[i]
- bitset(BV, i) sets B[i] = 1
- bitclear(BV, i) sets B[i] = 0
- bitset and bitclear easy without rank and select
- insert and delete require more work
- **10011010001111**
- 01001101001111

- what update time do we want to have?
 - O(n)
 - O(log n)
 - O(1)
- is doubling the length sufficient of amortized analysisPINGO
- why not using a linked list? PINGO

Next

dynamic bit vector including rank and select

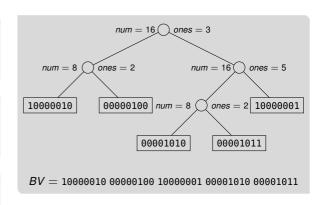
Practical Dynamic Bit Vectors (1/2) [Nav16]

- for dynamic bit vector of size n
- use slowdown factor O(w)
- if n is large, O(w) becomes similar to $O(\log n)$

- for dynamic bit vector of size n
- use slowdown factor O(w)
- if n is large, O(w) becomes similar to $O(\log n)$
- query time O(w)
- -n + O(n/w) bits of space
- trade off between query time and space

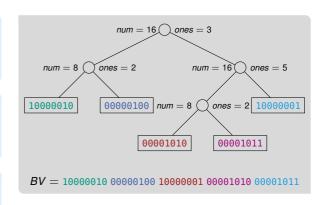
Practical Dynamic Bit Vectors (1/2) [Nav16]

- for dynamic bit vector of size n
- use slowdown factor O(w)
- if n is large, O(w) becomes similar to $O(\log n)$
- \blacksquare query time O(w)
- \blacksquare n + O(n/w) bits of space
- trade off between query time and space
- use pointer-based balanced search tree
- leaves store pointer to $\Theta(w^2)$ bits
- inner nodes store total number of bits (num) and number of ones (ones) in left subtree



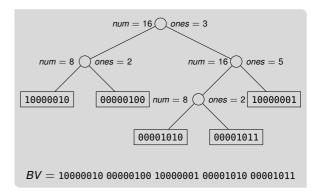
Practical Dynamic Bit Vectors (1/2) [Nav16]

- for dynamic bit vector of size n
- use slowdown factor O(w)
- if n is large, O(w) becomes similar to $O(\log n)$
- \blacksquare query time O(w)
- \blacksquare n + O(n/w) bits of space
- trade off between query time and space
- use pointer-based balanced search tree
- leaves store pointer to $\Theta(w^2)$ bits
- inner nodes store total number of bits (num) and number of ones (ones) in left subtree



Lemma: Practical Dynamic Bit Vectors Space

The dynamic bit vector requires n + O(n/w) bits of space

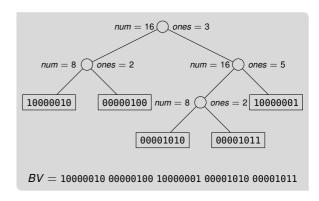


Practical Dynamic Bit Vectors (2/2)

Lemma: Practical Dynamic Bit Vectors Space

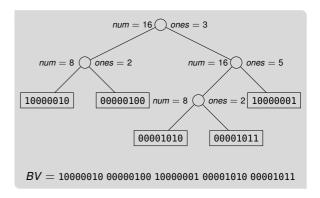
The dynamic bit vector requires n + O(n/w) bits of space

- \bullet $\Theta(w^2)$ bits per leaf
- $O(n/w^2)$ nodes
- each (inner) node stores 2 pointers (and 2 integers)
- \circ O(n/w) bits of space in addition to n bits



Access

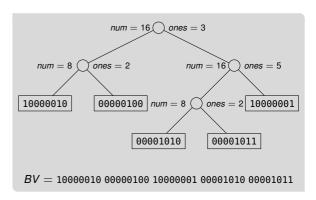
- follow path based on num
- requires O(log n) time tree is balanced
- return bit
- example on the board <a>=



Practical Dynamic Bit Vectors: Access

Access

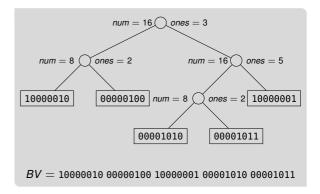
- follow path based on num
- requires O(log n) time tree is balanced
- return bit
- example on the board <a>=
- can return $O(w^2)$ bits at the same cost
- unlike std::vector<bool>



Practical Dynamic Bit Vectors: Rank

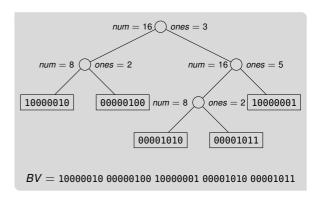
Rank

- keep track of ones to the left
- update based on ones stored in node
- traverse tree accordingly in $O(\log n)$ time
- \blacksquare popcount on the leaf in O(w) time
- example on the board <a>



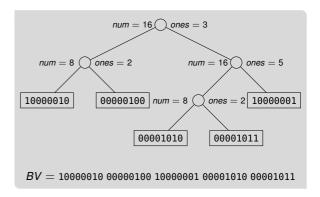
Select

- similar to rank
- keep track of ones
- or number of bits minus ones for select₀
- traverse tree accordingly in $O(\log n)$ time
- \blacksquare popcount and scan on the leaf in O(w) time
- example on the board <a>



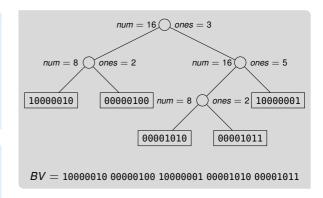
Practical Dynamic Bit Vectors: Insert

- inserting bit traverses down to leaf
- update *num* and *ones* on the path
- insert in bit vector at leaf
- allocate additional w bits if necessary
- tracking used space requires O(n/w) bits space



Practical Dynamic Bit Vectors: Insert

- inserting bit traverses down to leaf
- update *num* and *ones* on the path
- insert in bit vector at leaf <a>=
- allocate additional w bits if necessary
- tracking used space requires O(n/w) bits space
- at most every w inserts a new allocation
- constant time copy of computer word
- are we done? PINGO



- ensure leaves contain $\Theta(w^2)$ bits
- here $< 2w^2$ bits

- ensure leaves contain $\Theta(w^2)$ bits
- here $< 2w^2$ bits
- if leaf contains too many bits split leaf
- splitting can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board <a>

- ensure leaves contain $\Theta(w^2)$ bits
- here $< 2w^2$ bits
- if leaf contains too many bits split leaf
- splitting can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board

Lemma: Practical Dynamic Bit Vector Insert Time

Inserting a bit in the bit vector requires $O(w + \log n)$ time

- ensure leaves contain $\Theta(w^2)$ bits
- here $< 2w^2$ bits
- if leaf contains too many bits split leaf
- splitting can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board <a>П

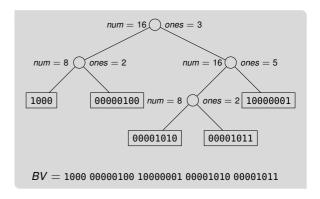
Lemma: Practical Dynamic Bit Vector Insert Time

Inserting a bit in the bit vector requires $O(w + \log n)$ time

Proof

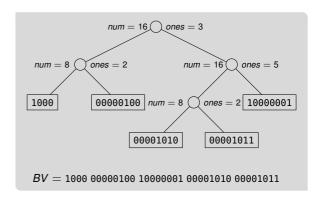
- finding leaf takes O(w) time
- splitting leaf takes O(w) time
- balancing tree takes $O(\log n)$ time

- deleting bit traverses down to leaf
- update *num* and *ones* on the path
- delete in bit vector at leaf
- free w bits if possible
- tracking used space requires O(m/w) bits space



Practical Dynamic Rank Data Structure: Delete

- deleting bit traverses down to leaf
- update *num* and *ones* on the path
- delete in bit vector at leaf
- free w bits if possible
- tracking used space requires O(m/w) bits space
- at most every w deletes a free
- are we done?



- ensure leaves contain $\Theta(w^2)$ bits
- here $> w^2/2$ bits

Maintaining Leaf Sizes (Delete)

- ensure leaves contain $\Theta(w^2)$ bits
- here $> w^2/2$ bits
- if leaf contains not enough bits steal bits from preceding or following leaf or
- merge leaves merging does not result in overflow
- merging can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board <a>

Maintaining Leaf Sizes (Delete)

- ensure leaves contain $\Theta(w^2)$ bits
- here $> w^2/2$ bits
- if leaf contains not enough bits steal bits from preceding or following leaf or
- merge leaves of merging does not result in overflow
- merging can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board <a>

Lemma: Practical Dynamic Bit Vector Insert Time

Deleting a bit in the bit vector requires $O(w + \log n)$ time

Maintaining Leaf Sizes (Delete)

- ensure leaves contain $\Theta(w^2)$ bits
- here $> w^2/2$ bits
- if leaf contains not enough bits steal bits from preceding or following leaf or
- merge leaves nerging does not result in overflow
- merging can require rebalancing of tree
- (left/right) rotation is sufficient
- example on the board <a>=

Lemma: Practical Dynamic Bit Vector Insert Time

Deleting a bit in the bit vector requires $O(w + \log n)$ time

Proof

- finding leaf takes O(w) time
- stealing bit requires O(1) time
- merging leaves takes O(1) time
- balancing tree takes O(log n) time

Practical Dynamic Rank Data Structure: Set/Unset

- if bit toggles, traverse and update *ones*
- toggle bit in leaf
- otherwise (unsure if bit toggles) find bit and
- if necessary backtrack path and update ones

Definition: Partial Sum

Given an array A containing n non-negative numbers $all < \ell$

- sum(A, i) returns $\sum_{j=0}^{i-1} A[j]$ sum(A, 0) = 0
- search(A, j) returns $min\{i \ge 0, sum(A, i) \ge j\}$

Definition: Partial Sum

Given an array A containing n non-negative numbers all $\leq \ell$

- sum(A, i) returns $\sum_{j=0}^{i-1} A[j]$ sum(A,0)=0
- search(A, j) returns $min\{i \ge 0, sum(A, i) \ge j\}$
- what has this to do with rank and select
 PINGO

Definition: Partial Sum

Given an array A containing n non-negative numbers $all < \ell$

- sum(A, i) returns $\sum_{i=0}^{i-1} A[j]$ sum(A,0)=0
- search(A, j) returns $min\{i \ge 0, sum(A, i) \ge j\}$
- what has this to do with rank and select PINGO
- sum can be answered in O(1) time using O(wn) bits of space
- using S[i] = sum(A, i)
- search can be answered in O(log n) time on S

Definition: Partial Sum

Given an array A containing n non-negative numbers $all < \ell$

- sum(A, i) returns $\sum_{i=0}^{i-1} A[i]$ sum(A, 0) = 0
- search(A, j) returns $min\{i \ge 0, sum(A, i) \ge j\}$
- what has this to do with rank and select **PINGO**
- sum can be answered in O(1) time using O(wn) bits of space
- using S[i] = sum(A, i)
- search can be answered in O(log n) time on S

Sampling

- sample every k-th sum in S of length | n/k |
- \bullet S[i] = sum(A, ik)
- $sum(A, i) = S[\lfloor i/k \rfloor] + \sum_{i=\lfloor i/k \rfloor k+1}^{i-1} A[i]$
- sum requires O(k) time
- search requires $O(\log n + k)$
- requiring $O(w\lceil n/k \rceil)$ bits of space

Theoretical Dynamic Rank and Select Data Structure

- for $\ell = 1$ partial sums is *rank* and *select* on bit vectors
- $O(\log n / \log \log n)$ query time [RRR01]
- -n + o(n) bits of space
- amortized update times

- $nH_0(BV) + o(n)$ bits of space with optimal query [HM14; NS14]
- H₀ means 0-th order empirical entropy [KM99]
- more on measurements for compressibility in lecture Text-Indexierung

deletenode(T, v)

- deletes node v such that
- v's children are now children of v's parent
- cannot delete the root

deletenode(T, v)

- deletes node v such that
- v's children are now children of v's parent
- cannot delete the root

insertchild(T, v, i, k)

- insert new *i*-th child of node *v* such that
- the new node becomes parent of
- the previously *i*-th to (i + k 1)-th child of v

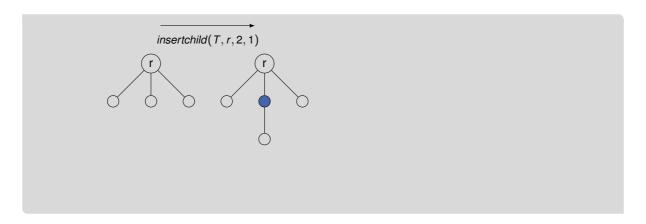
What is a Dynamic Succinct Tree

deletenode(T, v)

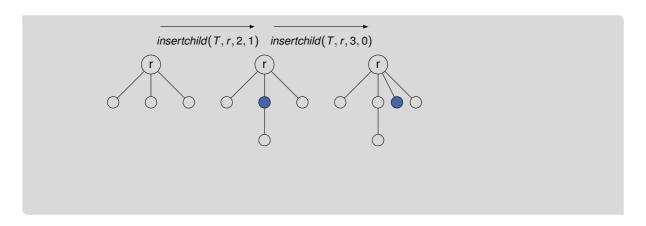
- deletes node v such that
- v's children are now children of v's parent
- cannot delete the root

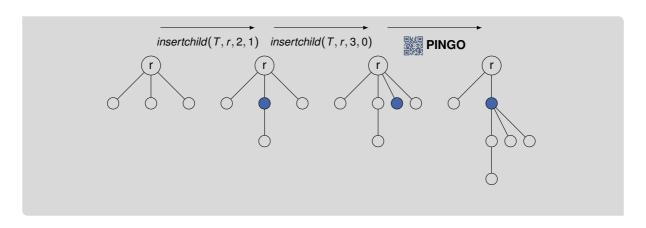
insertchild(T, v, i, k)

- insert new *i*-th child of node *v* such that
- the new node becomes parent of
- the previously *i*-th to (i + k 1)-th child of v
- insertchild(T, v, i, 0) inserts new leaf
- insertchild(T, v, i, 1) inserts new parent of only the previously i-th child
- insertchild $(T, v, 1, \delta(v))$ inserts new parent of all v's children

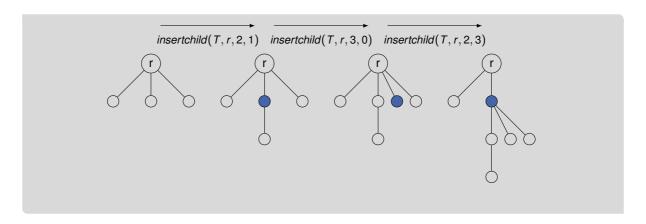


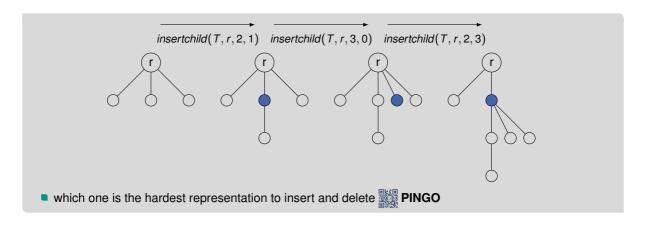
19/24





19/24





Dynamic LOUDS

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10

Dynamic LOUDS

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10

insertchild(T, v, i, k)

- add 1 to node
- add 0 at next level accordingly
- only works efficiently with leaves

Dynamic LOUDS

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10

insertchild(T, v, i, k)

- add 1 to node
- add 0 at next level accordingly
- only works efficiently with leaves <a>I

deletenode(T, v)

- remove 0 representing leaf
- remove 1 representing edge/child
- only works efficiently with leaves

Dynamic BP

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

to the bit vector

Dynamic BP

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

to the bit vector

insertchild(T, v, i, k)

- find parentheses representing subtree under new node
- can be empty if new leaf is inserted
- enclose these parentheses to add new node

Dynamic BP

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

insertchild(T, v, i, k)

- find parentheses representing subtree under new node
- can be empty if new leaf is inserted
- enclose these parentheses to add new node

deletenode(T, v)

remove both parentheses belonging to node

Dynamic DFUDS

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

to the bit vector that initially contains a left parenthesis • to make them balanced

Dynamic DFUDS

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

to the bit vector that initially contains a left parenthesis • to make them balanced

insertchild(T, v, i, k)

- find position where node is inserted
- if $i = \delta(v) + 1$ insert at end of subtree
- insert (k) O(w) time if $k = O(w^2)$
- if k > 1 remove k 1 left parentheses from v

Dynamic DFUDS

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

parenthesis • to make them balanced

to the bit vector that initially contains a left

<u>inser</u>tchild(T, v, i, k)

- find position where node is inserted
- if $i = \delta(v) + 1$ insert at end of subtree
- insert (k) O(w) time if $k = O(w^2)$
- if k > 1 remove k 1 left parentheses from ν

deletenode(T, v)

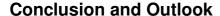
- find node v to delete and remove it from bit vector
- update arity of parent by inserting $(\delta^{(v)-1})$ before v's parent
- if v is leaf remove one left parenthesis instead

Update Times and Dependencies

- LOUDS and BP can be updated in time O(t_{update}), where
- t_{update} is the time to update the bit vector
- LOUDS can be updated in the same time, if the dynamic bit vector supports updates of blocks of size $\delta(v)$ for any node v

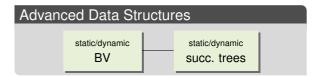
Dynamic Range Min-Max Tree

- range min-max trees needed for BP and DFUDS
- support operations in O(log n) time
- now range min-max trees must be dynamic
- we will see this later when introducing range min-max trees



This Lecture

- dynamic bit vectors with rank and select support
- dynamic succinct trees

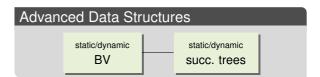


24/24

Conclusion and Outlook

This Lecture

- dynamic bit vectors with rank and select support
- dynamic succinct trees
- partial sum
- theoretical results for dynamic bit vectors



24/24

Conclusion and Outlook

This Lecture

- dynamic bit vectors with rank and select support
- dynamic succinct trees
- partial sum
- theoretical results for dynamic bit vectors

Next Lecture

- succinct graphs
- range min-max trees
- concluding succinct data structures
- introducing the project tasks

Advanced Data Structures				
	static/dynamic		static/dynamic SUCC. trees	

Bibliography I

- [HM14] Meng He and J. Ian Munro. "Space efficient data structures for dynamic orthogonal range counting". In: Comput. Geom. 47.2 (2014), pages 268–281. DOI: 10.1016/j.comgeo.2013.08.007.
- [KM99] S. Rao Kosaraju and Giovanni Manzini. "Compression of Low Entropy Strings with Lempel-Ziv Algorithms". In: *SIAM J. Comput.* 29.3 (1999), pages 893–911. DOI: 10.1137/S0097539797331105.
- [Nav16] Gonzalo Navarro. *Compact Data Structures A Practical Approach*. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0.
- [NS14] Gonzalo Navarro and Kunihiko Sadakane. "Fully Functional Static and Dynamic Succinct Trees". In: *ACM Trans. Algorithms* 10.3 (2014), 16:1–16:39. DOI: 10.1145/2601073.
- [RRR01] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. "Succinct Dynamic Data Structures". In: *WADS*. Volume 2125. Lecture Notes in Computer Science. Springer, 2001, pages 426–437. DOI: 10.1007/3-540-44634-6_39.