

Advanced Data Structures

Lecture 08: Temporal Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ⊚⊕⊚: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-06-20-99:21

The Project

- example inputs are online
- by: size of initial bit vector
- tree: full tree with depth d and c children
- outputs next week(?)
- representation of nodes

insertchild(T, v, i, k)

- insert new *i*-th child of node *v* such that
- the new node becomes parent of
- the previously *i*-th to (i + k 1)-th child of v
- boost's dynamic bit_set? yes
- for competition: space in bits and time in ms

PINGO

https://pingo.scc.kit.edu/311809

Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA

Proof (Sketch

- on each level, odd SA values can be decoded using the recursive SA
- there are at most log log *n* levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd
- requires rank and select data structures

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
Ψ	-	1	8	9	10	11	2	6	7	12	13	4	5
NEW	13	1	9	3	11	7	5	1	10	6	7	13	4
BV	1	0	1	1	0	1	1	0	0	1	0	0	1

Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
- keep old versions around
- in a "clever" way
- lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions

Model of Computation

Definition: Pointer Machine

- nodes containing d = O(1) fields
- one root node
- operations in O(1) time
 - new node
 - x = y.field
 - x.field = y
 - X =V+Z
- access nodes by root.x.y....

Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures

example on the board <a>

- add additional functionality to existing data structures
- is this a "useful" model? Representation in the image is the second of the image is the image in the image is the image is the image in the image is the image is

- balanced binary search tree
- linked list
- . . .

Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence

Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to latest version
- store ≤ 2p modifications to fields
 - modification = (version, field, value)
- version v: apply modification with version < v</p>

Proof (Sketch: Functionality)

- read version v
 - look up all modifications ≤ v
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node *n* is full
 - create new node n'
 - copy latest version to data fields
 - copy back pointers to n'
 - for every node x such that n points to x redirect its pack pointers to n'
 - for every node x pointing to n call recursive change of pointer to n'

Partial Persistence (2/3)

Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is O(1)

Proof (Sketch: Time)

- read is constant time
- write requires amortized analysis
- potential function Φ
- amortizes_cost(n) = cost(n) + $\Delta \Phi$

Proof (Sketch: Time cnt.)

- potential
 - $\Phi = c \cdot \sum \#$ modifications in latest version
- change of potential by adding new modification
- change of potential by creating new node
- combined:

amortized_cost
$$\leq c + c - 2cp + p \cdot \text{recursion}$$

- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: O(1)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update
- possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

Full Persistence (1/4)

Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion?
 PINGO

ab cd ef g h ij k (()(()(()(()()))(()(()())) $b_ab_be_bb_cb_de_d...$

- versions change
- update in constant time?

Order-Maintenance Data Structure

Linked List

- insert before or after element in O(1) time
- check if *u* is predecessor of *v* in *n* time

Balanced Search Tree

- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]

- insert before or after element in O(1) time
- check if u is predecessor of v in O(1) time
- how is

- linearized version tree in order-maintenance DS
- insert in O(1) time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in O(1) time
- maintain and check linearized version tree in O(1) time
- important for applying modifications to fields

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

- store original data and pointer (read only)
- store back pointers to all versions
- store < 2(d+p+1) modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

- read version v
 - look up all modifications ≤ v
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO

- if node n is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree <a>
 - apply all modifications to "subtree"
 - recursively update pointers

Full Persistence (3/4)

Proof (Sketch: Space)

- if no split no additional memory
- if split O(1) memory

Proof (Sketch: Time)

- applying versions in O(1) time
- there are ≤ 2(d + p) + 1 recursive pointer updates
- potential

$$\Phi = -c \cdot \sum$$
 #empty modification slots

Proof (Sketch: Time cnt.)

- if node is split $\Delta \Phi = -c \cdot 2(d+p+1)$
- if node is not split $\Delta \Phi = c$
- combined:

$$\mathsf{amortized_cost} = c + c \\ -2c(d+p+1) \\ + (2(d+p)+1) \cdot \mathsf{recursions}$$

if node is split constants cancel each other out

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update
- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree
- de-amortization is open problem

Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u
- more information:

```
https://ocw.mit.edu/courses/
6-851-advanced-data-structures-spring-2012/
pages/calendar-and-notes/
```

Conclusion and Outlook

This Lecture

partial and full persistent data structures

Next Lecture

retroactive data structures

- [Bro96] Gerth Stølting Brodal. "Partially Persistent Data Structures of Bounded Degree with Constant Update Time". In: *Nord. J. Comput.* 3.3 (1996), pages 238–255.
- [DS87] Paul F. Dietz and Daniel Dominic Sleator. "Two Algorithms for Maintaining Order in a List". In: *STOC*. ACM, 1987, pages 365–372. DOI: 10.1145/28395.28434.