KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 06: BSP Trees and Packed and Compressed Hash Tables
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®): www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2023-06-05-13:18

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Ui

Recap: 2-Dimensional Rectangular Range Searching P

Important

® assume now two points have the same x- or
y-coordinate

® generalize 1-dimensional idea B
@ 1-dimensional
|
& gsplit number of points in half at each node [
|
® points consist of one value I |
| |
a 2-dimensional L))
® points consist of two values : ‘
® split number of points in half w.r.t. one value
® switch between values depending on depth

2/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

.
Motivation

® hidden surface removal
® which pixel is visible
® important for rendering

3/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

z-Buffer Algorithm

@ transform scene such that viewing direction is
positive z-direction

® consider objects in scene in arbitrary order

® maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

4/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

z-Buffer Algorithm

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

& first sort object in depth-order
® depth-order may not always exist £.-J
@ how to efficiently sort objects?

4/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}

5/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

5/25

BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

hyperplanes create half-spaces and cut objects
into fragments

{(X1a'-'7) aixi + - +adXd>0}
{(X1,...7):a1X1+"'+adXd<0}

® each split creates two nodes in a tree

if number of objects in space is one: leaf
otherwise: inner node

2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™ B

6/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™

6/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

6/25

BSP Trees (2/2)

for leaf: store object/fragment

& for inner node v: store hyperplane h, and the

objects contained in h,

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h™

space of BSP tree is number of objects stored
at all nodes

what about fragments?

® too many fragments can make the tree big

2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

N

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Au tO' Pa rt i t i O n i n g Karlsruhe Institute of Technology

& sorting points for kd-trees worked well
® BSP-tree is used to sort objects in dept-order
® gquto-partitioning uses splitters through objects

® 2-dimensional: line through line segments
® 3-dimensional: half-plane through polygons

7/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Painter’s Algorithm

® consider view point pyiew

& traverse through tree and always recurse on
half-space that does not contain pyje first

& then scan-convert object contained in node
@ then recurse on half-space that contains pyiew

Pview

8/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

9/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
@ order matters

9/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information ,

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object .
@ order matters y

9/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (1/3)

® use auto-partitioning N
® construction similar to construction of kd-tree N
@ store all necessary information .

® hyperplane N
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
® order matters .

9/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

10/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

® distance of lines dists,(s;) =
segments inters. £(s;)
between s; and s; {(s;) inters. s;
00 otherwise

& example on the board

10/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (2/3)
The expected number of fragments generated when ® let dist;(sj)) = kand s;,, . . ., s, be segments
iterating through the line segments using a random between s; and s;

permutation is O(nlog n) = what is the probability that £(s;) cuts s;?

® this happens if no s;, is processed before s;

® since order is random
® distance of lines dists,(s;) =

segments inters. £(s;) P[¢(s;) cuts sj] <
between s; and s; {(s;) inters. s;

1
dists,(s;) + 2

00 otherwise

& example on the board

10/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

11/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

A BSP tree of size O(nlog n) can be computed in
expected time O(n? log n)

11/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Karlsruhe Institute of Technology

Constructing Planar BSP Trees (3/3) ﬂ(IT

@ expected number of cuts

1 S
E[# cuts generated by s;] < — <2 —— <2lnn
[9 / ’]—Zdists,(s,)+2— k42~
JAi k=0
@ all lines generate at most 2nIn n fragments
A BSP tree of size O(nlog n) can be computed in ® computing permutation in linear time

expected time O(n? log n)

construction is linear in number of fragments to
be considered

® number of fragments in subtree is bounded by n
® number of recursions is nlog n

11/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

New Topic: Hash Tables

® now hash tables
& first packed and compressed hash table
@ presented in January '23 at ALENEX

12/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Motivation IT

Karlsruhe Institute of Technology

Objects of Variable Size
@ static hash table for objects of variable size | H:l |:|| |-- l- -

& storing objects in external memory

a ideally retrieve objects in single I/O External Memory

& very small internal memory data structure

® only blocks of size B bits can be transferred
® one I/O per block transfer

13/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Space-Efficient Object Stores from Literature

® objects of size 256 bytes

® blocks of size 4096 bytes

& internal space I, (bits/block)
@ (*) consecutive I/O

14/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Space-Efficient Object Stores from Literature
Method I load factor 1/Os
® objects of size 256 bytes Larson et al. [LR85] 96 <96% 1
® blocks of size 4096 bytes SILT SortedStore [Lim+11] 51 100% 1
® internal space Iy (bits/block) Linear Separator [Lar88] 8 85% 1
@ (*) consecutive /O Separator [GL88; LK84] 6 98% 1
g Robin Hood [Cel88] 3 9% 1.3
& Ramakrishna et al. [RT89] 4 80% 1
Jensen, Pagh [JP08] 0 80% 1.25
Cuckoo [Aza+94; Pag03] 0 <100% 2
PaCHash, a = 1 2 100% 2*
PaCHash, a =8 5 100% 1.13*
o SILT LogStore [Lim+11] 832 100% 1
s SkimpyStash [DSL11] 32 <98% 8
‘s PaCHash, a=1 2 99.95% 2.06*
> PaCHash,a=8 5 99.95% 1.19*

14/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

‘ ‘ D D ‘ ‘ ‘ ‘ I:l l - - objects of variable size

EM

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

‘ ‘DD‘ H H:ll-- objects of variable size
EDDDDD hash function h: K — 1..am

EM

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

‘ ‘ D D ‘ ‘ ‘ ‘ I:l l - - objects of variable size

¢ tuning parameter

BEREODBEAC]LILIEIE hash function h: K — 1..am

AN # EM blocks

EM

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

EM

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

15/25

[OEE

. I -
1

2023-06-05

Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

sorted objects in EM in bins

Institute of Theoretical Informatics, Algorithm Engineering

PaCHash Overview

15/25

[OEE

. I -
1

2023-06-05

Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

KIT

Karlsruhe Institute of Technology

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

sorted objects in EM in bins

no fragmentation

Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

no fragmentation
@ E I:] first bin (partially) in block

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

no fragmentation
@ E I:] first bin (partially) in block
/),D: <P17~~~~,Pm>

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

- | . - sorted objects in EM in bins
_/ no fragmentation
é first bin (partially) in block

= p=(p..pm)

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
X # EM blocks

| . - sorted objects in EM in bins

\) _/ no fragmentation
%\ first bin (partially) in block

= p=(p..pm)

store offset in EM

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

| . - sorted objects in EM in bins

_/ no fragmentation
%\ first bin (partially) in block

P ={(p1se ., pm)

store offset in EM

__——> B bits remaining per EM block

15/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Finding Blocks

Query Algorithm

. s

by = h(x)

find first i with p; < by
if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)

16/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

m
B @ B 0

Ui

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

Finding Blocks

Query Algorithm Elias-Fano Coding

16/25

. s

m
n

by = h(x)

find first i with p; < by
if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)

2023-06-05

Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

R

Ui

Karlsruhe Institute of Technology

® given k monotonic increasing integers in 1..u

® store log k MSBs encoded in bit vector
® store log(u/k) LSBs plain
® k(2 + log(u/k)) + 1+ o(k) bits in total

® predecessor in O(k) time

Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Finding Blocks
Query Algorithm Elias-Fano Coding
| . -- ® given k monotonic increasing integers in 1..u
J— ® store log k MSBs encoded in bit vector

A u store log(u/k) LSBs plain
E‘ ‘}l ‘E ® k(2 + log(u/k)) + 1 + o(k) bits in total

m predecessor in O(k) time

by = h(X) . : :
find first 7 with p; < by Lemma: Space with Elias-Fano Coding

When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal
memory per block.

if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)

16/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Finding Blocks
Query Algorithm Elias-Fano Coding
| . -- ® given k monotonic increasing integers in 1..u
— ® store log k MSBs encoded in bit vector

A u store log(u/k) LSBs plain
I%' ‘E‘ ‘E' ® k(2 + log(u/k)) + 1 + o(k) bits in total

® predecessor in O(k) time

® b, = h(x)
When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal

memory per block.

wifp =bleti=i—1
® find first j with p; > by
® returni..(j —1)

16/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predecessor Query in PaCHash Internal Memory

When using Elias-Fano coding to store p, the range
of blocks containing the bin of an object x can be
found in expected constant time.

17/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Predecessor Query in PaCHash Internal Memory

When using Elias-Fano coding to store p, the range ® consider [log m| MSB
of blocks containing the bin of an object x can be

/ X ® |et bin b, have MSBs equal to u
found in expected constant time.

® expected size E(Y,) of all bins with MSB u that
are < by is

> Iyl-P(h(y) w/ MSB = u; h(y) < h(x))

yes
<> Iyl - P(h(y) w/ MSB = u)
yeS
Iy -
m yes m

® number of entries to scan is E(Y,)/B =1

17/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Loading Blocks from External Memory

Retrieving an object x of size |x| from a PaCHash
data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.

18/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Loading Blocks from External Memory

Retrieving an object x of size |x| from a PaCHash
data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.

® expected size of bin by = h(x)

E(|bx]) = |x] + Z ly[P(y € bx)
YES,y#x
< IxI+) YIP(y € by)
yes
1 B
= |X|+Z|J’|'aﬁm— \X|+3
y€s

18/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Loading Blocks from External Memory

KIT

Karlsruhe Institute of Technology

Retrieving an object x of size |x| from a PaCHash @ expected number of blocks overlapped by by

data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.

E(X) =1+ (E(|bx]) - 1)/8

x| 1 _
+B+a /

® expected size of bin by = h(x) = P(bin and block border align) = 1/B

E(|bx]) = |x| + Z ly[P(y € by)
YES,y#x
< IxI+) YIP(y € by)
yes
1 B
= |X|+Z|J’|'aﬁm— \X|+3
y€s

18/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Experimental Evaluation

Hardware and Software

Intel i7 11700 (base clock speed: 2.5 GHz)
1 TB Samsung 980 Pro NVMe SSD
Ubuntu 21.10 (Kernel 5.13.0)

io_uring for I/O operations

GCC 11.2.0 (-03 -march=native)

B = 4096 bytes

19/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Ui

Experimental Evaluation

Hardware and Software Objects

Intel i7 11700 (base clock speed: 2.5 GHz) ® here only fixed size

1 TB Samsung 980 Pro NVMe SSD ® more in the paper (very similar results)
Ubuntu 21.10 (Kernel 5.13.0)

io_uring for I/O operations

GCC 11.2.0 (-03 -march=native)

B = 4096 bytes

19/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Experimental Evaluation
® [ntel i7 11700 (base clock speed: 2.5 GHz) ® here only fixed size
a 1 TB Samsung 980 Pro NVMe SSD ® more in the paper (very similar results)
@ Ubuntu 21.10 (Kernel 5.13.0)
® io_uring for IO operations
® GCC 11.2.0 (-03 -march=native) ® LevelDB [Goo21]
® B = 4096 bytes @ RocksDB [Fac21]

SILT [Lim+11].

® std::unordered_map
RecSplit [EGV20]

a CHD [BBD09; CR+12]
@ PTHash [PT21]

19/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Construction
C © 280 [V V'V VNV - I
=]
2 L 32—
= 10 g = -g,‘\g 107 |
3, g 3 s o0 38
03 08 275[£38
O § O m = =
o & Q= c0
Q Q — o=
N © N < o=
£ 5 88 108
8 £ o0l E5
£ 3] | » =
53
o
265 = ! L ! !
2 4 2 4
Number of objects [Millions] Number of objects [Millions] Number of objects [Millions]

--@-- CHD (16-perfect) [BBD09] —o— LevelDB [Goo21] - RecSplit[EGV20] - SILT (Static part) [Lim+11]
-+ Cuckoo (here) - 1 PTHash [PT21] —o— RocksDB [Fac21] - Separator (here)
—4— LevelDB (Static part) [Goo21] —e— PaCHash (here) & SILT [Lim+11] std::unordered_map

20/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Queries

21/25

Query Throughput
internal only [MQueries/s]

60

40

20

...... ’#VTVV’?YVYV

9'$'®-$€)-®-e-®.$$.e.$.$
cecEeteecececeeceee

®®®®®®®®®®
! !
2 4

Number of objects [Millions]

-@-- CHD (16-perfect) [BBD09]
-+ Cuckoo (here)
—— LevelDB (Static part) [Goo21]

2023-06-05

Query Throughput
direct 1/0 [MQueries/s]

—o— LevelDB [Goo21]
----- t-- PTHash [PT21]
—e&— PaCHash (here)

0.8 |

0.4 |-

VYV IFTTT
cececeececceececeec

s o SO R SR

2 4
Number of objects [Millions]

Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

Query Throughput
buffered 1/0 [MQueries/s]

—x- RecSplit [EGV20]
—— RocksDB [Fac21]
g SILT [Lim+11]

KIT

Karlsruhe Institute of Technology

2 4
Number of objects [Millions]

~-@-- SILT (Static part) [Lim+11]
-y Separator (here)

std::unordered_map

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Maximum Load Factor of Competitors

100% - 100% -
95% |-

95% |-

90% |- 90% |-

Cuckoo Hashing
maximum load factor
maximum load factor

Separator Hashing

85% |-
! ! ! ! ! ! ! !
300 400 500 600 300 400 500 600

Average object size [B] Average object size [B]

85% |-

—o— Identical size —=— Normal distribution —e— Uniform distribution

22/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structures ﬂ(IT

Karlsruhe Institute of Technology

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

23/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structures IT

Karlsruhe Institute of Technology

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s

23/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structures IT

Karlsruhe Institute of Technology

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s

Entropy Encoding

& encode positions directly
@ compress bit vector using Huffman codes
® encode blocks of size 8, 16, 32, or 64

23/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Alternative Internal Memory Data Structures

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s

Entropy Encoding

& encode positions directly
® compress bit vector using Huffman codes
@ encode blocks of size 8, 16, 32, or 64

23/25 2023-06-05

Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash

Ui

Karlsruhe Institute of Technology

@
= 329
[3] =&
o o O

8@ 35

g =

bl Fo
=2

=
E 38
o
=
1 8 64 1 8 64

Parameter a Parameter a

—e— Huffman, Twitter

—v— Huffman, Wikipedia
—2— Elias-Fano, UniRef
—+— Succincter (theoretical)

—+— Huffman, UniRef
—&— Elias-Fano, Twitter
—— Elias-Fano, Wikipedia

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Conclusion and Outlook

This Lecture Advanced Data Structures

® BSP trees
PaCHash Successor RMQ
® PaCHash
Kd- & Range static static
Tree BV succ. trees

range min-max tree succ. graphs

24/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Ui

Conclusion and Outlook

This Lecture Advanced Data Structures

® BSP trees
PaCHash Successor RMQ
@ PaCHash !
NeXt LeCtU re Kd- & Range static static
® more on hashing Tree BV succ. trees

range min-max tree succ. graphs

24/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

F.A.Q. Project A“(IT

® measuring memory

25/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

F.A.Q. Project A“(IT

® measuring memory
® measuring time

25/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

F.A.Q. Project A“(IT

Karlsruhe Institute of Technology

® measuring memory
® measuring time

® std::map vS st::unordered_map

25/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

F.A.Q. Project A“(IT

Karlsruhe Institute of Technology

® measuring memory
® measuring time
® std::map vS st::unordered_map

® more questions?

25/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[Aza+94] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. “Balanced allocations (extended
abstract)”. In: STOC. ACM, 1994, pages 593-602. DOI: 10.1145/195058.195412.

[BBD09] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682—693. DOI: 10.1007/978-3-642-04128-0_61.

[Cel88] Pedro Celia. External Robin Hood Hashing. Technical report. Computer Science Department,
Indiana University. TR246, 1988.

[CR+12] Davi de Castro Reis, Djamel Belazzougui, Fabiano Cupertino Botelho, and Nivio Ziviani. CMPH - C
Minimal Perfect Hashing Library. http://cmph.sourceforge.net/. 2012.

[DSL11] Biplob K. Debnath, Sudipta Sengupta, and Jin Li. “SkimpyStash: RAM space skimpy key-value store
on flash-based storage”. In: SIGMOD Conference. ACM, 2011, pages 25-36. DOI:
10.1145/1989323.1989327.

26/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1145/195058.195412
https://doi.org/10.1007/978-3-642-04128-0_61
http://cmph.sourceforge.net/
https://doi.org/10.1145/1989323.1989327

KIT

Bibliography Il

[EGV20] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175-185. Dol:
10.1137/1.9781611976007. 14.

[Eli74] Peter Elias. “Efficient Storage and Retrieval by Content and Address of Static Files”. In: J. ACM 21.2
(1974), pages 246—260. DOI: 10.1145/321812.321820.

[Fac21] Facebook. RocksDB. A Persistent Key-Value Store for Fast Storage Environments.
https://rocksdb.org. 2021.

[Fan71] Robert Mario Fano. On the number of bits required to implement an associative memory. Technical
report. Project MAC, Memorandum 61". MIT, Computer Structures Group, 1971.

[GL88] Gaston H. Gonnet and Per-Ake Larson. “External hashing with limited internal storage”. In: J. ACM
35.1 (1988), pages 161-184. DOI: 10.1145/42267.42274.

[Goo21] Google. LevelDB is a Fast Key-Value Storage Library Written at Google.
https://github.com/google/leveldb. 2021.

27/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/321812.321820
https://rocksdb.org
https://doi.org/10.1145/42267.42274
https://github.com/google/leveldb

KIT

Bibliography Il

[JPO8] Morten Skaarup Jensen and Rasmus Pagh. “Optimality in External Memory Hashing”. In:
Algorithmica 52.3 (2008), pages 403—411. DOI: 10.1007/500453-007-9155- x.

[Lar88] Per-Ake Larson. “Linear Hashing with Separators - A Dynamic Hashing Scheme Achieving
One-Access Retrieval”. In: ACM Trans. Database Syst. 13.3 (1988), pages 366—388. DOI:
10.1145/44498.44500.

[Lim+11] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. “SILT: a memory-efficient,
high-performance key-value store”. In: SOSP. ACM, 2011, pages 1-13. DOI:
10.1145/2043556.2043558.

[LK84] Per-Ake Larson and Ajay Kajla. “File Organization: Implementation of a Method Guaranteeing
Retrieval in One Access”. In: Commun. ACM 27.7 (1984), pages 670-677. DOI:
10.1145/358105.358193.

[LR85] Per-Ake Larson and M. V. Ramakrishna. “External Perfect Hashing”. In: SIGMOD Conference. ACM
Press, 1985, pages 190-200. DOI: 10.1145/318898.318916.

28/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1007/s00453-007-9155-x
https://doi.org/10.1145/44498.44500
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1145/358105.358193
https://doi.org/10.1145/318898.318916

KIT

Bibliography IV

[Pag03] Rasmus Pagh. “Basic External Memory Data Structures”. In: Algorithms for Memory Hierarchies.
Volume 2625. Lecture Notes in Computer Science. Springer, 2003, pages 14-35. DOI:
10.1007/3-540-36574-5_2.

[Pat08] Mihai Patrascu. “Succincter”. In: FOCS. IEEE Computer Society, 2008, pages 305-313. DOI:
10.1109/F0CS.2008.83.

[PT21] Giulio Ermanno Pibiri and Roberto Trani. “PTHash: Revisiting FCH Minimal Perfect Hashing”. In:
SIGIR. ACM, 2021, pages 1339-1348. DOI: 10.1145/3404835.3462849.

[RT89] M. V. Ramakrishna and Walid R. Tout. “Dynamic External Hashing with Guaranteed Single Access
Retrieval”. In: FODO. Volume 367. Lecture Notes in Computer Science. Springer, 1989,
pages 187—201. DOI: 10.1007/3-540-51295-0_127.

29/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1007/3-540-36574-5_2
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1007/3-540-51295-0_127

	Appendix

