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Recap: 2-Dimensional Rectangular Range Searching P

Important

® assume now two points have the same x- or
y-coordinate

® generalize 1-dimensional idea B
@ 1-dimensional
|
& gsplit number of points in half at each node [
|
® points consist of one value I |
| |
a 2-dimensional L ) )
® points consist of two values : ‘
® split number of points in half w.r.t. one value
® switch between values depending on depth

2/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering



KIT

.
Motivation

® hidden surface removal
® which pixel is visible
® important for rendering
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z-Buffer Algorithm

@ transform scene such that viewing direction is
positive z-direction

® consider objects in scene in arbitrary order

® maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object
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z-Buffer Algorithm

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

& first sort object in depth-order
® depth-order may not always exist £.-J
@ how to efficiently sort objects?
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BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}
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® binary partition
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > 0}

a ={(X1,...,Xg): @Xy+ -+ agxg <0}
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BSP Trees (1/2)

® partition space using hyperplanes
® binary partition

hyperplanes create half-spaces and cut objects
into fragments

{(X1a'-'7 ) aixi + - +adXd>0}
{(X1,...7 ):a1X1+"'+adXd<0}

® each split creates two nodes in a tree

if number of objects in space is one: leaf
otherwise: inner node
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BSP Trees (2/2)

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™
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Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™ B
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® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™
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® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™
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BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™
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BSP Trees (2/2)

for leaf: store object/fragment

& for inner node v: store hyperplane h, and the

objects contained in h,

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h™

space of BSP tree is number of objects stored
at all nodes

what about fragments?

® too many fragments can make the tree big
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& sorting points for kd-trees worked well
® BSP-tree is used to sort objects in dept-order
® gquto-partitioning uses splitters through objects

® 2-dimensional: line through line segments
® 3-dimensional: half-plane through polygons
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Painter’s Algorithm

® consider view point pyiew

& traverse through tree and always recurse on
half-space that does not contain pyje first

& then scan-convert object contained in node
@ then recurse on half-space that contains pyiew

Pview
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
@ order matters
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information ,

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object .
@ order matters y
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning N
® construction similar to construction of kd-tree N
@ store all necessary information .

® hyperplane N
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
® order matters .
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Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)
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Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

® distance of lines dists,(s;) =
# segments inters. £(s;)
between s; and s; {(s;) inters. s;
00 otherwise

& example on the board
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Constructing Planar BSP Trees (2/3)
The expected number of fragments generated when ® let dist;(sj)) = kand s;,, . . ., s, be segments
iterating through the line segments using a random between s; and s;

permutation is O(nlog n) = what is the probability that £(s;) cuts s;?

® this happens if no s;, is processed before s;

® since order is random
® distance of lines dists,(s;) =

# segments inters. £(s;) P[¢(s;) cuts sj] <
between s; and s; {(s;) inters. s;

1
dists,(s;) + 2

00 otherwise

& example on the board
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Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments
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Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

A BSP tree of size O(nlog n) can be computed in
expected time O(n? log n)
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Constructing Planar BSP Trees (3/3) ﬂ(IT

@ expected number of cuts

1 S
E[# cuts generated by s;] < — <2 —— <2lnn
[ 9 / ’]—Zdists,(s,)+2— k42~
JAi k=0
@ all lines generate at most 2nIn n fragments
A BSP tree of size O(nlog n) can be computed in ® computing permutation in linear time

expected time O(n? log n)

construction is linear in number of fragments to
be considered

® number of fragments in subtree is bounded by n
® number of recursions is nlog n
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New Topic: Hash Tables

® now hash tables
& first packed and compressed hash table
@ presented in January '23 at ALENEX
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Objects of Variable Size
@ static hash table for objects of variable size | H:l |:|| |-- l- -

& storing objects in external memory

a ideally retrieve objects in single I/O External Memory

& very small internal memory data structure

® only blocks of size B bits can be transferred
® one I/O per block transfer
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Space-Efficient Object Stores from Literature

® objects of size 256 bytes

® blocks of size 4096 bytes

& internal space I, (bits/block)
@ (*) consecutive I/O
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Space-Efficient Object Stores from Literature
Method I load factor 1/Os
® objects of size 256 bytes Larson et al. [LR85] 96 <96% 1
® blocks of size 4096 bytes SILT SortedStore [Lim+11] 51 100% 1
® internal space Iy (bits/block) Linear Separator [Lar88] 8 85% 1
@ (*) consecutive /O Separator [GL88; LK84] 6 98% 1
g Robin Hood [Cel88] 3 9% 1.3
& Ramakrishna et al. [RT89] 4 80% 1
Jensen, Pagh [JP08] 0 80% 1.25
Cuckoo [Aza+94; Pag03] 0 <100% 2
PaCHash, a = 1 2 100% 2*
PaCHash, a =8 5 100% 1.13*
o SILT LogStore [Lim+11] 832 100% 1
s SkimpyStash [DSL11] 32 <98% 8
‘s PaCHash, a=1 2 99.95% 2.06*
> PaCHash,a=8 5  99.95% 1.19*
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PaCHash Overview

‘ ‘ D D ‘ ‘ ‘ ‘ I:l l - - objects of variable size

EM
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PaCHash Overview

‘ ‘DD‘ H H:ll-- objects of variable size
EDDDDD hash function h: K — 1..am

EM
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PaCHash Overview

‘ ‘ D D ‘ ‘ ‘ ‘ I:l l - - objects of variable size

¢ tuning parameter

BEREODBEAC]LILIEIE  hash function h: K — 1..am

AN # EM blocks

EM
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PaCHash Overview

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

EM
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PaCHash Overview
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¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

sorted objects in EM in bins
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objects of variable size

¢ tuning parameter

hash function h: K — 1..am
AN # EM blocks

sorted objects in EM in bins

no fragmentation
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PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

no fragmentation
@ E I:] first bin (partially) in block
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PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

no fragmentation
@ E I:] first bin (partially) in block
\_/_),D: <P17~~~~,Pm>
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PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

- | . - sorted objects in EM in bins
\_/ no fragmentation
é first bin (partially) in block

= p=(p..pm)
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PaCHash Overview

objects of variable size

¢ tuning parameter

hash function h: K — 1..am
X # EM blocks

| . - sorted objects in EM in bins

\ ) \_/ no fragmentation
%\ first bin (partially) in block

= p=(p..pm)

store offset in EM
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PaCHash Overview

objects of variable size

¢ tuning parameter

10 hash function h: K — 1..am
X # EM blocks

| . - sorted objects in EM in bins

\_/ no fragmentation
%\ first bin (partially) in block

P ={(p1se ., pm)

store offset in EM

\__——> B bits remaining per EM block
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Finding Blocks

Query Algorithm

. s

by = h(x)

find first i with p; < by
if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)
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Finding Blocks

Query Algorithm Elias-Fano Coding
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by = h(x)

find first i with p; < by
if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)
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® given k monotonic increasing integers in 1..u

® store log k MSBs encoded in bit vector
® store log(u/k) LSBs plain
® k(2 + log(u/k)) + 1+ o(k) bits in total

® predecessor in O(k) time
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Finding Blocks
Query Algorithm Elias-Fano Coding
| . -- ® given k monotonic increasing integers in 1..u
J— ® store log k MSBs encoded in bit vector

A u store log(u/k) LSBs plain
E‘ ‘}l ‘E ® k(2 + log(u/k)) + 1 + o(k) bits in total

m predecessor in O(k) time

by = h(X) . : :
find first 7 with p; < by Lemma: Space with Elias-Fano Coding

When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal
memory per block.

if pj=byleti=i—1
find first j with p; > by
return i..(j — 1)
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Finding Blocks
Query Algorithm Elias-Fano Coding
| . -- ® given k monotonic increasing integers in 1..u
— ® store log k MSBs encoded in bit vector

A u store log(u/k) LSBs plain
I%' ‘E‘ ‘E' ® k(2 + log(u/k)) + 1 + o(k) bits in total

® predecessor in O(k) time

® b, = h(x)
When using Elias-Fano coding [Eli74; Fan71] to store
p, the index needs 2 + log a + o(1) bits of internal

memory per block.

wifp =bleti=i—1
® find first j with p; > by
® returni..(j —1)
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Predecessor Query in PaCHash Internal Memory

When using Elias-Fano coding to store p, the range
of blocks containing the bin of an object x can be
found in expected constant time.
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Predecessor Query in PaCHash Internal Memory

When using Elias-Fano coding to store p, the range ® consider [log m| MSB
of blocks containing the bin of an object x can be

/ X ® |et bin b, have MSBs equal to u
found in expected constant time.

® expected size E(Y,) of all bins with MSB u that
are < by is

> Iyl-P(h(y) w/ MSB = u; h(y) < h(x))

yes
<> Iyl - P(h(y) w/ MSB = u)
yeS
Iy -
m yes m

® number of entries to scan is E(Y,)/B =1
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Loading Blocks from External Memory

Retrieving an object x of size |x| from a PaCHash
data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.
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Loading Blocks from External Memory

Retrieving an object x of size |x| from a PaCHash
data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.

® expected size of bin by = h(x)

E(|bx]) = |x] + Z ly[P(y € bx)
YES,y#x
< IxI+ ) YIP(y € by)
yes
1 B
= |X|+Z|J’|'aﬁm— \X|+3
y€s

18/25 2023-06-05 Florian Kurpicz | Advanced Data Structures | 06 BSP Trees & PaCHash Institute of Theoretical Informatics, Algorithm Engineering
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Retrieving an object x of size |x| from a PaCHash @ expected number of blocks overlapped by by

data structure loads < 1 + |x|/B + 1/a consecutive
blocks from the external memory in expectation.

E(X) =1+ (E(|bx]) - 1)/8

x| 1 _
+B+a /

® expected size of bin by = h(x) = P(bin and block border align) = 1/B

E(|bx]) = |x| + Z ly[P(y € by)
YES,y#x
< IxI+ ) YIP(y € by)
yes
1 B
= |X|+Z|J’|'aﬁm— \X|+3
y€s
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Experimental Evaluation

Hardware and Software

Intel i7 11700 (base clock speed: 2.5 GHz)
1 TB Samsung 980 Pro NVMe SSD
Ubuntu 21.10 (Kernel 5.13.0)

io_uring for I/O operations

GCC 11.2.0 (-03 -march=native)

B = 4096 bytes
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Experimental Evaluation

Hardware and Software Objects

Intel i7 11700 (base clock speed: 2.5 GHz) ® here only fixed size

1 TB Samsung 980 Pro NVMe SSD ® more in the paper (very similar results)
Ubuntu 21.10 (Kernel 5.13.0)

io_uring for I/O operations

GCC 11.2.0 (-03 -march=native)

B = 4096 bytes
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Experimental Evaluation
® [ntel i7 11700 (base clock speed: 2.5 GHz) ® here only fixed size
a 1 TB Samsung 980 Pro NVMe SSD ® more in the paper (very similar results)
@ Ubuntu 21.10 (Kernel 5.13.0)
® io_uring for IO operations
® GCC 11.2.0 (-03 -march=native) ® LevelDB [Goo21]
® B = 4096 bytes @ RocksDB [Fac21]

SILT [Lim+11].

® std::unordered_map
RecSplit [EGV20]

a CHD [BBD09; CR+12]
@ PTHash [PT21]
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Construction
C © 280 [V V'V VNV - I
=]
2 L 32—
= 10 g = -g,‘\g 107 |
3, g 3 s o0 38
03 08 275[ £38
O § O m = =
o & Q= c0
Q Q — o=
N © N < o=
£ 5 88 108
8 £ o0l E5
£ 3] | » =
53
o
265 = ! L ! !
2 4 2 4
Number of objects [Millions] Number of objects [Millions] Number of objects [Millions]

--@-- CHD (16-perfect) [BBD09] —o— LevelDB [Goo21] - RecSplit[EGV20] - SILT (Static part) [Lim+11]
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Alternative Internal Memory Data Structures ﬂ(IT

Karlsruhe Institute of Technology

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.
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Alternative Internal Memory Data Structures IT

Karlsruhe Institute of Technology

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s
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Alternative Internal Memory Data Structures IT

Karlsruhe Institute of Technology

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s

Entropy Encoding

& encode positions directly
@ compress bit vector using Huffman codes
® encode blocks of size 8, 16, 32, or 64
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Alternative Internal Memory Data Structures

Lemma: Space with Succincter

When using Succincter [Pat08] to store p, the index
needs 1.44 + log(a+ 1) + o(1) bits of internal
memory per block.

Structure of Bit Vector

® runs of 6s and 10s
® sometimes additional 1s

Entropy Encoding

& encode positions directly
® compress bit vector using Huffman codes
@ encode blocks of size 8, 16, 32, or 64
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Conclusion and Outlook

This Lecture Advanced Data Structures

® BSP trees
PaCHash Successor RMQ
® PaCHash
Kd- & Range static static
Tree BV succ. trees

range min-max tree succ. graphs
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Conclusion and Outlook

This Lecture Advanced Data Structures

® BSP trees
PaCHash Successor RMQ
@ PaCHash !
NeXt LeCtU re Kd- & Range static static
® more on hashing Tree BV succ. trees

range min-max tree succ. graphs
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Karlsruhe Institute of Technology

F.A.Q. Project A“(IT

® measuring memory
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Karlsruhe Institute of Technology

F.A.Q. Project A“(IT

® measuring memory
® measuring time
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F.A.Q. Project A“(IT

Karlsruhe Institute of Technology

® measuring memory
® measuring time

® std::map vS st::unordered_map
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F.A.Q. Project A“(IT

Karlsruhe Institute of Technology

® measuring memory
® measuring time
® std::map vS st::unordered_map

® more questions?
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