

Text Indexing

Lecture 08: LZ and BWT Compressed Indeces

Florian Kurpicz

PINGO

https://pingo.scc.kit.edu/669011

- based on backwards-search
- used to answer rank-queries on BWT

```
Function BackwardsSearch(P[1..n], C, rank):

s = 1, e = n

for i = m, ..., 1 do

s = C[P[i]] + rank_{P[i]}(s - 1) + 1

e = C[P[i]] + rank_{P[i]}(e)

if s > e then

return \emptyset

return [s, e]
```


- based on backwards-search
- used to answer rank-queries on BWT

FM-Index

- build wavelet tree directly on BWT
- wavelet tree can be H₀ compressed
- blind to repetitions

```
Function BackwardsSearch(P[1..n], C, rank):

1 | s = 1, e = n

2 | for i = m, ..., 1 do

3 | s = C[P[i]] + rank_{P[i]}(s - 1) + 1

4 | e = C[P[i]] + rank_{P[i]}(e)

5 | if s > e then

6 | | return \emptyset

7 | return [s, e]
```


- based on backwards-search
- used to answer rank-queries on BWT

FM-Index

- build wavelet tree directly on BWT
- wavelet tree can be H₀ compressed
- blind to repetitions

r-Index

- many arrays with r entries
- build wavelet tree on one of these arrays
- size in numbers of BWT runs r

```
Function BackwardsSearch(P[1..n], C, rank):

1 | s = 1, e = n

2 | for i = m, ..., 1 do

3 | s = C[P[i]] + rank_{P[i]}(s-1) + 1

4 | e = C[P[i]] + rank_{P[i]}(e)

5 | if s > e then

6 | | return \emptyset

7 | return [s, e]
```


Statistical Coding

- based on frequencies of characters
- results in size $|T| \cdot H_k(T)$ • k-th order empirical entropy
- good if frequencies are skewed
- blind to repetitions $|\underbrace{T \dots T}_{\ell}| \cdot H_k(\underbrace{T \dots T}_{\ell}) \approx \ell |T| \cdot H_k(T)$

Statistical Coding

- based on frequencies of characters
- results in size $|T| \cdot H_k(T)$ • k-th order empirical entropy
- good if frequencies are skewed
- blind to repetitions $|\underbrace{T \dots T}_{\ell}| \cdot H_k(\underbrace{T \dots T}_{\ell}) \approx \ell$ $\ell |T| \cdot H_k(T)$

LZ-Compression

- references to previous occurrences
- each LZ factor can be encoded in O(1) space
- good for repetitions
- index in this lecture

Different Types of Compression

Statistical Coding

- based on frequencies of characters
- results in size $|T| \cdot H_k(T)$ • k-th order empirical entropy
- good if frequencies are skewed
- blind to repetitions $|\underbrace{T \dots T}_{\ell}| \cdot H_k(\underbrace{T \dots T}_{\ell}) \approx$ $\ell |T| \cdot H_k(T)$

LZ-Compression

- references to previous occurrences
- each LZ factor can be encoded in O(1) space
- good for repetitions
- index in this lecture

BWT-Compression

- used in powerful index
- theoretical insight in this lecture

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ , the L777 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z$ and for all $i \in [1, z]$ f_i is
- single character not occurring in $f_1 \dots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_1 \dots f_i$

T = abababbbbaba\$

 $f_1 = a$

LZ-Compressed Index

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ , the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z$ and for all $i \in [1, z]$ f_i is
- single character not occurring in $f_1 \dots f_{i-1}$ or
- longest substring occurring \geq 2 times in $f_1 \dots f_i$

Now

- LZ-compressed replacement for wavelet trees
- rank and access queries select also supported
- **LZ**-compression better than H_k -compression

T = abababbbbaba\$

 $f_1 = a$

 \bullet $f_4 = bbb$

 $f_2 = b$

 $f_5 = aba$

Block Trees [Bel+21] (1/4)

Definition: Block Tree (1/4)

Given a text T of length n over an alphabet of size σ

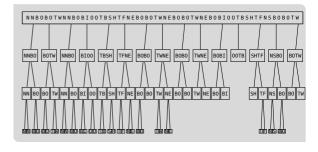
- $\tau, s \in \mathbb{N}$ greater 1
- assume that n = s · τ^h for some h ∈ N
 append \$s until n has this form

A block tree is a

- perfectly balanced tree with height h
- that may have leaves at higher levels

such that

- the root has s children,
- each other inner node has τ children



Block Trees (2/4)

Definition: Block Tree (2/4)

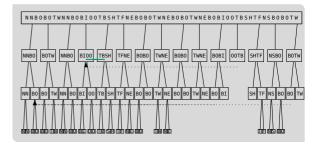
In a block tree, leaves at

- the last level store characters or substrings of T
- at higher levels store special leftward pointer

Each node u

- represents a block B^u
- which is a substring of *T* identified by a position

The root represents T and its children consecutive blocks of T of size n/s



Block Trees (3/4)

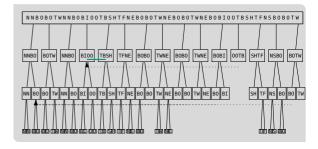
Definition: Block Tree (3/4)

Let ℓ_u be the level (depth) of node u

the level of the root is 0

Let B_1, B_2, \ldots be the blocks represented at level ℓ_u from left to right

- for any i, B_i and B_{i+1} are consecutive in T
- if B_iB_{i+1} are the leftmost occurrence in T, the nodes representing the blocks are marked



Block Trees (4/4)

Definition: Block Tree (4/4)

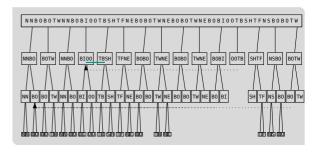
If node *u* is marked, then

- it is an internal node
- \blacksquare with au children

otherwise, if node u is not marked, then

- u is a leaf storing
- lacktriangle pointers to nodes v_i , v_{i+1} at the same level
 - that represent blocks B_i and B_{i+1}
 - covering the leftmost occurrence of B^u
- offset to the occurrence of B^u in B_iB_{i+1}

leaves on last level store text explicitly



- $|B^{u}| = n/(s\tau^{\ell_{u}-1})$
- if $|B_u|$ is small enough, store text explicitly
 - $\bullet |B^u \in \Theta(\lg_\sigma n)|$

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- \blacksquare B_i is marked if it contains end of LZ factor
- there are only z LZ factors

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- B_i is marked if it contains end of LZ factor
- there are only z LZ factors

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

• $O(\tau z)$ blocks per level

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- \blacksquare B_i is marked if it contains end of LZ factor
- there are only z LZ factors

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- \blacksquare B_i is marked if it contains end of LZ factor
- there are only z LZ factors

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space
- marked block requires O(τ lg n) bits of space
 charged to child

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- B_i is marked if it contains end of LZ factor
- there are only z LZ factors

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space
- marked block requires O(τ lg n) bits of space
 charged to child
- last level has $O(\tau z)$ blocks with plain text
 - $O(\lg_{\sigma} n)$ symbols of $\lceil \lg n \rceil$ bits
 - requiring O(lg n) bits per block

Proof (Sketch)

Let $\ell > 0$ be a level in the block tree and

- $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell 1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- \blacksquare B_i is marked if it contains end of LZ factor
- there are only z LZ factors

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space
- marked block requires $O(\tau \lg n)$ bits of space charged to child
- last level has $O(\tau z)$ blocks with plain text
 - $O(\lg_{\pi} n)$ symbols of $\lceil \lg n \rceil$ bits
 - requiring O(lg n) bits per block
- $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$ and O(s) pointers to top level

Let $\ell > 0$ be a level in the block tree and

- lacksquare $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell-1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

- B_i is marked if it contains end of LZ factor
- there are only z LZ factors

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space
- marked block requires $O(\tau \lg n)$ bits of space charged to child
- last level has $O(\tau z)$ blocks with plain text
 - $O(\lg_{\pi} n)$ symbols of $\lceil \lg n \rceil$ bits
 - requiring O(lg n) bits per block
- $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$ and O(s) pointers to top level
- rounding up length adds $< Oh\tau$ blocks per level

Let $\ell > 0$ be a level in the block tree and

- lacksquare $C = B_{i-1}B_iB_{i+1}$ a concatenation of three consecutive blocks at level $\ell-1$
- not containing the end of an LZ factor
- thus a leftwards occurrence in T

 B_{i-1} and B_{i+1} can only be marked if B_i is marked

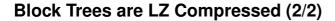
- B_i is marked if it contains end of LZ factor
- there are only z LZ factors

Lemma: Space Requirements of Block Trees

Given a text T of length n over an alphabet of size σ and integers $s, \tau > 1$, a block tree of T has height $h = \lg_T \frac{n \lg \sigma}{s \lg n}$. The block tree requires

$$O((s + z\tau \lg_{\tau} \frac{n \lg \sigma}{s \lg n}) \lg n)$$
 bits of space,

where z is the number of LZ77 factors of T



Lemma: Space Requirements of Block Trees

Given a text T of length n over an alphabet of size σ and integers $s, \tau > 1$, a block tree of T has height $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$. The block tree requires

$$O((s + z\tau \lg_{\tau} \frac{n \lg \sigma}{s \lg n}) \lg n)$$
 bits of space,

where z is the number of LZ77 factors of T

- s = z results in a tree of height $O(\lg_{\tau} \frac{n \lg \sigma}{z \lg n})$
- space requirements $O(z\tau \lg_{\tau} \frac{n \lg \sigma}{z \lg n})$ bits
- however z not known

Access Queries in Block Trees

- queries are easy to realize
- if not supported directly, additional information can be stored for blocks

Access Query

Given position i return T[i]

- follow nodes that represent block containing *T*[*i*]
- of not marked follow pointer and consider offset
- at leaf, if last level, return character
- else, follow pointer and continue
- time $O(\lg_{\tau} \frac{n \lg \sigma}{s \lg n})$

example on the board 💷

Rank Queries in Block Trees

- for each block add histogram Hist_{Bu} for prefix of T up to block (not containing)
- $O(\sigma(s + z\tau \lg_{\tau} \frac{n \lg n}{s \lg n}) \lg n)$ bits of space

- time $O(\lg_{\tau} \frac{n \lg \sigma}{s \lg n})$
- example on the board

Rank Query

Given position *i* and character α return $rank_{\alpha}(T, i)$

- lacktriangledown follow nodes that represent block containing T[i]
- lacktriangledown remember $\mathit{Hist}_{\mathit{B}_{\mathit{u}}}[\alpha]$
- of not marked follow pointer and consider offset
- at leaf, if last level, compute local rank binary rank for each character
- else, follow pointer and continue

- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks
- identify unmarked blocks on next level
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ time and O(n) space

- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks
- identify unmarked blocks on next level
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ time and O(n) space

Pruning

- size of block tree can be reduced further
- some blocks not necessary
- those blocks can easily be identified

- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks
- identify unmarked blocks on next level
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ time and O(n) space

Pruning

- size of block tree can be reduced further
- some blocks not necessary
- those blocks can easily be identified

$O(s + z\tau)$ Working Space

- replace Aho-Corasick automaton with Karp-Rabin fingerprints
- validate if matching fingerprints due to matching strings Monte Carlo algorithm
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ expected time and O(n) space
- only expected construction time!

- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks
- identify unmarked blocks on next level
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ time and O(n) space

Pruning

- size of block tree can be reduced further
- some blocks not necessary
- those blocks can easily be identified

$O(s + z\tau)$ Working Space

- replace Aho-Corasick automaton with Karp-Rabin fingerprints
- validate if matching fingerprints due to matching strings • Monte Carlo algorithm
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ expected time and O(n) space
- only expected construction time!
- queries very fast in practice
- construction very slow in practice
- good topic for thesis ③

Let T be a text, then

- r(T) is number of *BWT* runs of *T*
- z(T) is number of LZ77 factors of T

Definition: Burrows-Wheeler Transform [BW94]

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the Burrows-Wheeler transform is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 0\\ \$ & SA[i] = 0 \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

Lemma: Number of BWT Runs

Let T be a text of length n, then

$$r(T) \in O(z(T) \lg^2 n)$$

- LCP[i] is irreducible if i = 1 or $BWT[i] \neq BWT[i 1]$
- number of irreducible LCP-values is r(T)

Lemma: Sum of Irreducible LCP-Values

The number of irreducible LCP-Values in $[\ell, 2\ell]$ is in $O(z\ell \lg n)$

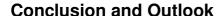
- r(T) is number of irreducible LCP-values
- apply lemma for $[2^i, 2^{i+1})$ for $i \in [0, \lfloor \lg n \rfloor]$
- number of LCP[i] = 0 entries is $\sigma \le z$

Lemma: Number of Occurrences of Substrings

For any $\ell > 1$, the number of distinct substrings of T of length ℓ is $\leq z\ell$

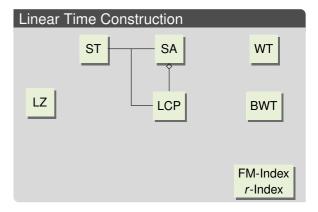
- lacktriangle consider any substring of length $\ell > 1$
- if substrings is contained in LZ factor, there is previous occurrence
- distinct substrings overlap LZ factors
- there are at most ℓ substring per end of LZ factor 💷

- use number of distinct substrings
- to show that the number of irreducible LCP-values
- is limited as stated in lemma



This Lecture

- block trees
- $r \in O(z \lg^2 n)$



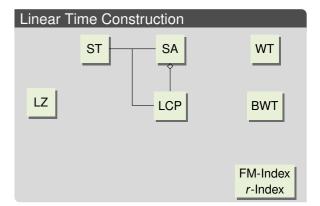


This Lecture

- block trees
- $r \in O(z \lg^2 n)$

Open Questions

- efficient block tree construction
- linear time block tree construction



Conclusion and Outlook

This Lecture

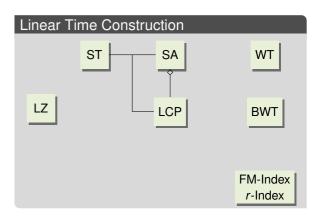
- block trees
- $r \in O(z \lg^2 n)$

Open Questions

- efficient block tree construction
- linear time block tree construction

Next Lecture

suffix array construction in different models of computation



Bibliography I

- [Bel+21] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Gonzalo Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. "Block Trees". In: *J. Comput. Syst. Sci.* 117 (2021), pages 1–22. DOI: 10.1016/j.jcss.2020.11.002.
- [BW94] Michael Burrows and David J. Wheeler. *A Block-Sorting Lossless Data Compression Algorithm.* Technical report. 1994.
- [KK20] Dominik Kempa and Tomasz Kociumaka. "Resolution of the Burrows-Wheeler Transform Conjecture". In: FOCS. IEEE, 2020, pages 1002–1013. DOI: 10.1109/F0CS46700.2020.00097.
- [ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: IEEE Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.