

Text Indexing

Lecture 12: Longest Common Extensions

Florian Kurpicz

Recap: Document Listing and Top-k Retrieval

Definition: Document Listing

Given a collection of D documents $\mathcal{D}=\{d_1,d_2,\ldots,d_D\}$ containing symbols from an alphabet $\Sigma=[1,\sigma]$ and a pattern $P\in\Sigma^*$, return all $j\in[1,D]$, such that d_j contains P.

Recap: Document Listing and Top-k Retrieval

Definition: Document Listing

Given a collection of D documents $\mathcal{D}=\{d_1,d_2,\ldots,d_D\}$ containing symbols from an alphabet $\Sigma=[1,\sigma]$ and a pattern $P\in\Sigma^*$, return all $j\in[1,D]$, such that d_j contains P.

- $d_1 = ATA$
- $d_2 = TAAA$
- $d_3 = TATA$

And for queries:

- \blacksquare P = TA is contained in $d_1, d_2, \text{ and } d_3$
- \blacksquare P = ATA is contained in d_1 and d_3

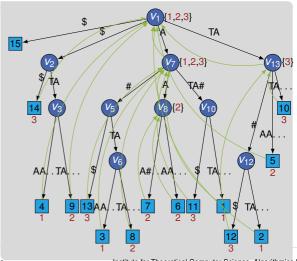
Definition: Document Listing

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \dots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$ and a pattern $P \in \Sigma^*$, return all $j \in [1, D]$, such that d_i contains P.

- $d_1 = ATA$
- $d_2 = TAAA$
- $d_3 = TATA$

And for queries:

- P = TA is contained in d_1, d_2 , and d_3
- \blacksquare P = ATA is contained in d_1 and d_3



2/18

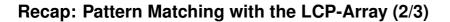
- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries o detailed introduction in Advanced Data Structures

Definition: Range Minimum Queries

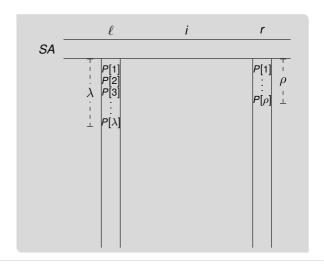
Given an array A[1..m), a range minimum query for a range $\ell \le r \in [1, n)$ returns

$$RMQ_A(\ell, r) = \arg\min\{A[k]: k \in [\ell, r]\}$$

- RMQs can be answered in O(1) time and
- require O(n) space



- during binary search matched
- lacksquare λ characters with left border ℓ and
- ightharpoonup characters with right border r
- w.l.o.g. let $\lambda > \rho$
- middle position i
- decide if continue in $[\ell, i]$ or [i, r]
- let $\xi = lcp(SA[\ell], SA[i])$ O(1) time with RMOs



• let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$

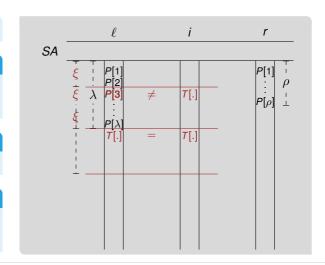
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$

compare as before

$\xi < \lambda$

- $\xi \ge \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- r = i and $\rho = \xi$ without character comparison



Old Problem, New Name

Definition: Longest Common Extensions

Given a text T of size n over an alphabet of size σ , construct data structure that answers for $i, j \in [1, n]$

$$lce_{\mathcal{T}}(i,j) = \max\{\ell \geq 0 \colon T[i,i+\ell) = T[j,j+\ell)\}$$

• also denoted as lcp(i, j) • in this lecture

Old Problem, New Name

Definition: Longest Common Extensions

Given a text T of size n over an alphabet of size σ , construct data structure that answers for $i, j \in [1, n]$

$$lce_T(i,j) = max\{\ell \ge 0: T[i,i+\ell) = T[j,j+\ell)\}$$

• also denoted as lcp(i, j) • in this lecture

$$lce_T(1, 14) = 0 1 2 3 4 5$$

Old Problem, New Name

Definition: Longest Common Extensions

Given a text T of size n over an alphabet of size σ , construct data structure that answers for $i, j \in [1, n]$

$$lce_T(i,j) = max\{\ell \ge 0: T[i,i+\ell) = T[j,j+\ell)\}$$

Florian Kurpicz | Text Indexing | 12 Longest Common Extensions

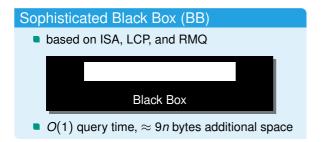
also denoted as lcp(i, j) **1** in this lecture

Applications

- (sparse) suffix sorting
- approximate pattern matching

$$lce_T(1, 14) = 0 1 2 3 4 5$$

Practical Algorithms for Longest Common Extensions [IT09]



Practical Algorithms for Longest Common Extensions [IT09]



Ultra Naive Scan (UNS) compare character by character \circ O(n) query time, no additional space

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)

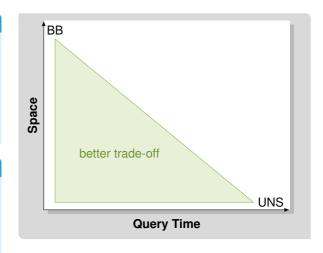
based on ISA, LCP, and RMQ

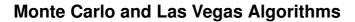
• O(1) query time, $\approx 9n$ bytes additional space

Ultra Naive Scan (UNS)

compare character by character

 \circ O(n) query time, no additional space





setting: randomized algorithms

Monte Carlo Algorithm

- returns wrong result with small probability
- deterministic running time

setting: randomized algorithms

Monte Carlo Algorithm

- returns wrong result with small probability
- deterministic running time

Las Vegas Algorithm

- returns correct result
- only expected running time

Monte Carlo and Las Vegas Algorithms

setting: randomized algorithms

Monte Carlo Algorithm

- returns wrong result with small probability
- deterministic running time

Las Vegas Algorithm

- returns correct result
- only expected running time

- some Monte Carlo algorithms can be turned into Las Vegas algorithms
- depends on correctness check
- all Monte Carlo algorithms presented today can be turned into Las Vegas algorithms

- compute s of strings
- application not limited to LCEs

- compute ss of strings
- application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]

Given a text T of length n over an alphabet of size σ and a random prime number $q \in \Theta(n^c)$, the Karp-Rabin fingerprint of T[i..j] is

$$\widehat{\mathbb{Q}}(i,j) = (\sum_{k=i}^{j} T[k] \cdot \sigma^{j-k}) \bmod q$$

Randomized String Matching

- compute ss of strings
- application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]

Given a text T of length n over an alphabet of size σ and a random prime number $q \in \Theta(n^c)$, the Karp-Rabin fingerprint of T[i..j] is

$$\widehat{\mathbb{Q}}(i,j) = (\sum_{k=i}^{j} T[k] \cdot \sigma^{j-k}) \bmod q$$

• if $T[i..i + \ell] = T[j..j + \ell]$, then

$$\widehat{\mathbb{Q}}(i,i+\ell) = \widehat{\mathbb{Q}}(j,j+\ell)$$

• if $T[i..i + \ell] \neq T[j..j + \ell]$, then

$$\mathsf{Prob}(\widehat{\mathbb{Q}}(i,i+\ell)) = \widehat{\mathbb{Q}}(j,j+\ell)) \in O(\frac{\ell \lg \sigma}{n^c})$$

- prime has to be chosen uniformly at random
- how to turn it into Las Vegas algorithm?

Randomized String Matching

- compute ss of strings
- application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]

Given a text T of length n over an alphabet of size σ and a random prime number $q \in \Theta(n^c)$, the Karp-Rabin fingerprint of T[i..j] is

$$\widehat{\mathbb{Q}}(i,j) = (\sum_{k=i}^{j} T[k] \cdot \sigma^{j-k}) \bmod q$$

• if $T[i..i + \ell] = T[j..j + \ell]$, then

$$\widehat{\mathbb{Q}}(i,i+\ell) = \widehat{\mathbb{Q}}(j,j+\ell)$$

• if $T[i..i + \ell] \neq T[j..j + \ell]$, then

$$\mathsf{Prob}(\widehat{\mathbb{Q}}(i,i+\ell)) = \widehat{\mathbb{Q}}(j,j+\ell)) \in O(\frac{\ell \lg \sigma}{n^c})$$

- prime has to be chosen uniformly at random
- how to turn it into Las Vegas algorithm?
- example on the board <a>

• given a text T over an alphabet of size σ

- given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit

- \blacksquare given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet

- \blacksquare given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet
- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$

- \blacksquare given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet
- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$
- group the text into size- τ blocks: B[1.. n/τ] with

$$B[i] = T[(i-1)\tau + 1..i\tau]$$

- \blacksquare given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet
- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$
- group the text into size- τ blocks: B[1.. n/τ] with

$$B[i] = T[(i-1)\tau + 1..i\tau]$$

• compute $P'[i] = \widehat{\mathfrak{g}}(i, \tau i)$ for $i \in [1, n/\tau]$

- \blacksquare given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet
- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$
- group the text into size- τ blocks: B[1.. n/τ] with

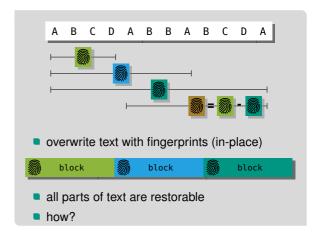
$$B[i] = T[(i-1)\tau + 1..i\tau]$$

- compute $P'[i] = \widehat{\mathfrak{g}}(i, \tau i)$ for $i \in [1, n/\tau]$
- P'[i] can fits in B[i]

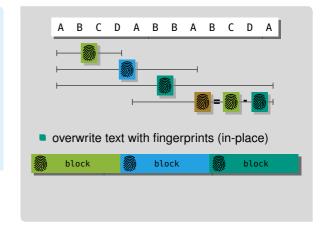
- given a text T over an alphabet of size σ
- let w be size of a computer word e.g., 64 bit
- choose $\tau \in \Theta(w/\lg \sigma)$ 8 for byte alphabet
- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- group the text into size- τ blocks: B[1.. n/τ] with

$$B[i] = T[(i-1)\tau + 1..i\tau]$$

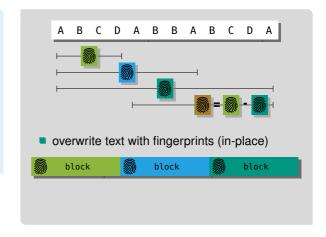
- compute $P'[i] = \widehat{\mathfrak{g}}(i, \tau i)$ for $i \in [1, n/\tau]$
- P'[i] can fits in B[i]



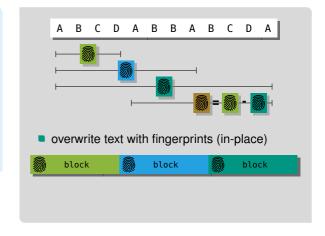
- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$



- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $\bullet \ \lfloor B[i]/q \rfloor \in \{0,1\}$

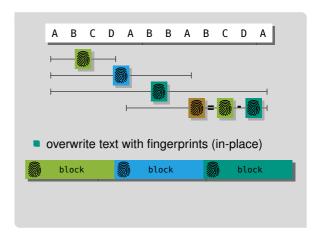


- choose random prime $q \in \left[\frac{1}{2}\sigma^{\tau}, \sigma^{\tau}\right)$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $|B[i]/q| \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ



- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $|B[i]/q| \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ
- $P'[i] = \widehat{\mathbb{Q}}(i, \tau i)$ and together with D:

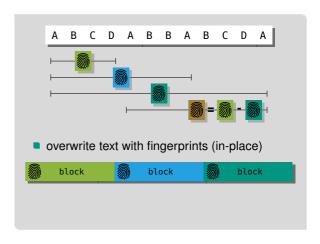
$$B[i] = (P'[i] - \sigma^{\tau} \cdot P'[i-1] \bmod q) + D[i] \cdot q$$



- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $|B[i]/q| \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ
- $P'[i] = \widehat{\mathbb{Q}}(i, \tau i)$ and together with D:

$$B[i] = (P'[i] - \sigma^{\tau} \cdot P'[i-1] \bmod q) + D[i] \cdot q$$

this gives us access to the text(!)

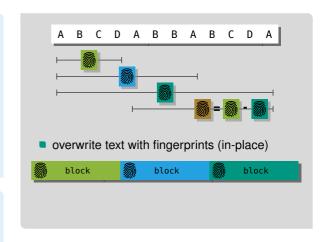


Overwriting the Text with Fingerprints (2/2)

- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $\blacksquare \ \lfloor B[i]/q \rfloor \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ
- $P'[i] = \widehat{\otimes}(i, \tau i)$ and together with D:

$$B[i] = (P'[i] - \sigma^{\tau} \cdot P'[i-1] \bmod q) + D[i] \cdot q$$

- this gives us access to the text(!)
- q can be chosen such that MSB of P'[i] is zero w.h.p., then
- D can be stored in the MSBs

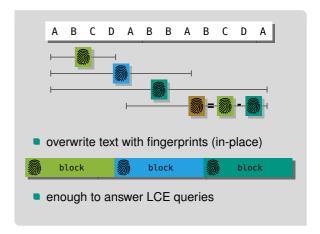


Overwriting the Text with Fingerprints (2/2)

- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $|B[i]/q| \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ
- $P'[i] = \widehat{\mathbb{Q}}(i, \tau i)$ and together with D:

$$B[i] = (P'[i] - \sigma^{\tau} \cdot P'[i-1] \bmod q) + D[i] \cdot q$$

- this gives us access to the text(!)
- q can be chosen such that MSB of P'[i] is zero w.h.p., then
- D can be stored in the MSBs

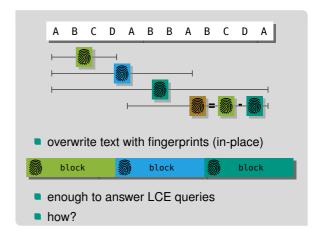


Overwriting the Text with Fingerprints (2/2)

- choose random prime $q \in [\frac{1}{2}\sigma^{\tau}, \sigma^{\tau})$
- $B[i] = T[(i-1)\tau + 1..i\tau]$
- $|B[i]/q| \in \{0,1\}$
- D[i] = |B[i]/q| bit vector of size n/τ
- $P'[i] = \widehat{\mathbb{Q}}(i, \tau i)$ and together with D:

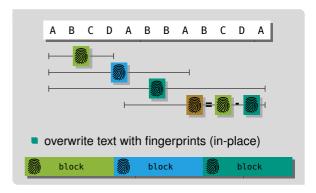
$$B[i] = (P'[i] - \sigma^{\tau} \cdot P'[i-1] \bmod q) + D[i] \cdot q$$

- this gives us access to the text(!)
- q can be chosen such that MSB of P'[i] is zero w.h.p., then
- D can be stored in the MSBs



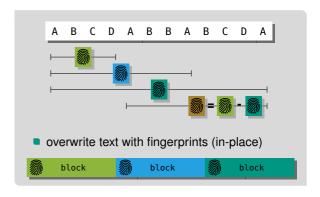
LCEs with Fingerprints

- compute LCE of i and j
- exponential search until $\widehat{\mathbb{Q}}(i, i + 2^k) \neq \widehat{\mathbb{Q}}(j, j + 2^k)$
- binary search to find correct block m
- recompute B[m] and find mismatching character



LCEs with Fingerprints

- compute LCE of i and j
- exponential search until $\widehat{\mathbb{Q}}(i, i + 2^k) \neq \widehat{\mathbb{Q}}(j, j + 2^k)$
- binary search to find correct block m
- recompute B[m] and find mismatching character
- requires $O(\lg \ell)$ time for LCEs of size ℓ



Given a text T of length n and $0 < \tau \le n/2$, a simplified τ -synchronizing set S of T is

$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

T

Given a text T of length n and $0 < \tau \le n/2$, a simplified τ -synchronizing set S of T is

$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

Т ______

$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

Т	<u> </u>		
	<u>τ</u> +	1	

$$S = \{i \in [1, n-2\tau+1] : \min\{ \widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau] \} \in \{ \widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1) \} \}$$

$$S = \{i \in [1, n-2\tau+1] : \min\{ \widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau] \} \in \{ \widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1) \} \}$$



Given a text T of length n and $0 < \tau \le n/2$, a simplified τ -synchronizing set S of T is

Florian Kurpicz | Text Indexing | 12 Longest Common Extensions

$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

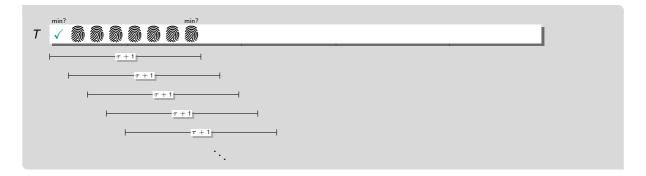
$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

$$S = \{i \in [1, n-2\tau+1] : \min\{\widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau]\} \in \{\widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1)\}\}$$

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]

$$S = \{i \in [1, n-2\tau+1] : \min\{ \widehat{\emptyset}(j, j+\tau-1) : j \in [i, i+\tau] \} \in \{ \widehat{\emptyset}(i, i+\tau-1), \widehat{\emptyset}(i+\tau, i+2\tau-1) \} \}$$



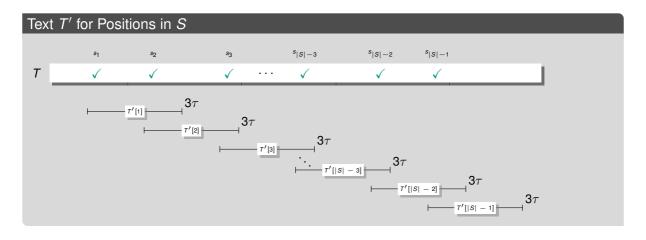
- $|S| = \Theta(n/\tau)$ in practice (on most data sets)
- more complex definition required to obtain this size

Consistency & (Simplified) Density Property

■ for all $i, j \in [1, n-2\tau+1]$ we have

$$T[i, i+2\tau-1] = T[j, j+2\tau-1] \Rightarrow i \in S \Leftrightarrow j \in S$$

• for any τ consecutive positions there is at least one position in $\mathcal S$

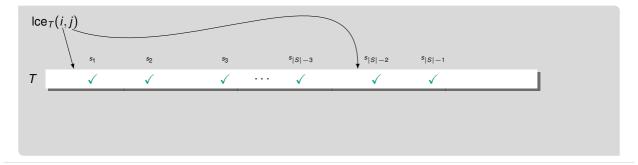


- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'

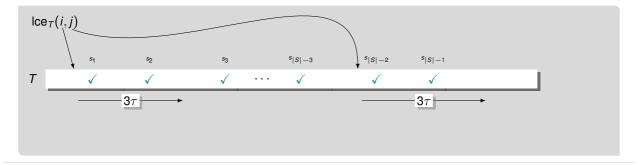
- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'



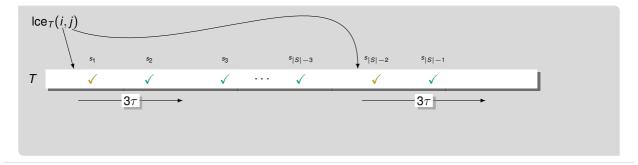
- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'



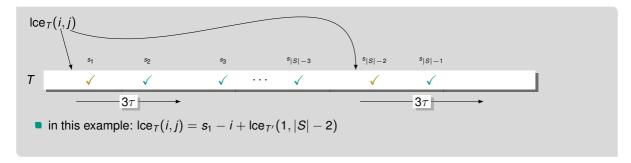
- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'



- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

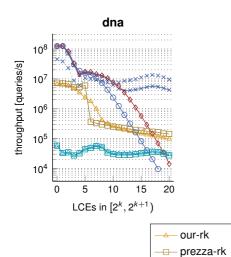
- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'

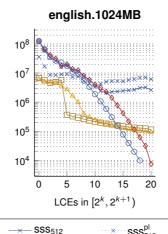


- in practice, we sort the substrings
- \blacksquare characters of T' are the ranks of substrings
- build BB LCE for T' w.r.t. length in T

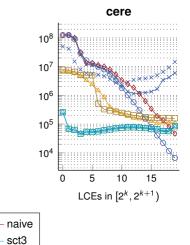
- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T'

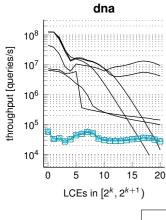
- in this example: $lce_T(i,j) = s_1 i + lce_{T'}(1,|S|-2)$
- in practice: we have a very fast static successor data structure

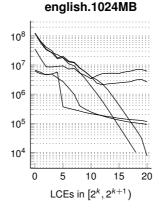


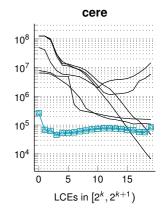


--- ultra naive

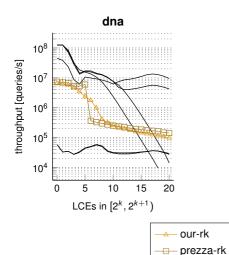


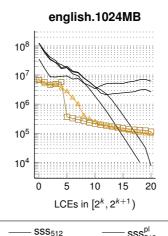






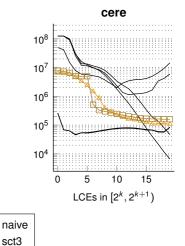


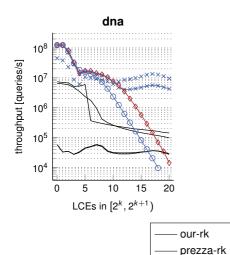


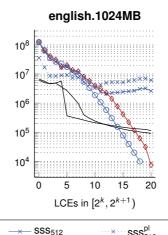


ultra naive

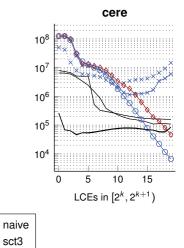
sada

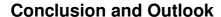






--- ultra naive





This Lecture

- longest common extension queries
- Karp-Rabin fingerprints
- string synchronizing sets

Thats all! We are (mostly) done.



This Lecture

- longest common extension queries
- Karp-Rabin fingerprints
- string synchronizing sets

Next Lecture

big recap and Q&A

Thats all! We are (mostly) done.

Anmeldung Projekt & Discussion of the evaluation

Bibliography I

- [Din+20] Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian Kurpicz. "Practical Performance of Space Efficient Data Structures for Longest Common Extensions". In: ESA. Volume 173. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 39:1–39:20. DOI: 10.4230/LIPIcs.ESA.2020.39.
- [IT09] Lucian Ilie and Liviu Tinta. "Practical Algorithms for the Longest Common Extension Problem". In: SPIRE. Volume 5721. Lecture Notes in Computer Science. Springer, 2009, pages 302–309. DOI: 10.1007/978-3-642-03784-9\ 30.
- [KK19] Dominik Kempa and Tomasz Kociumaka. "String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure". In: STOC. ACM, 2019, pages 756–767.
- [KR87] Richard M. Karp and Michael O. Rabin. "Efficient Randomized Pattern-Matching Algorithms". In: IBM J. Res. Dev. 31.2 (1987), pages 249–260. DOI: 10.1147/rd.312.0249.
- [Pre18] Nicola Prezza. "In-Place Sparse Suffix Sorting". In: SODA. SIAM, 2018, pages 1496–1508. DOI: 10.1137/1.9781611975031.98.