

Text Indexing

Lecture 05: Burrows-Wheeler Transform

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @) (www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-11-28-11:37

www.kit.edu

PINGO

https://pingo.scc.kit.edu/886630

Recap: Text-Compression

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ , the **LZ77 factorization** is

- a set of *z* factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z$ and for all $i \in [1, z] f_i$ is
- single character not occurring in $f_1 \dots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_1 \dots f_i$

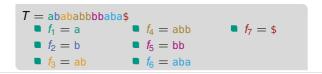
$T = abababbbbaba$ f_1 = a$	• $f_4 = bbb$
■ <i>f</i> ₂ = b	■ <i>f</i> ₅ = aba
f ₃ = abab	• $f_6 = $ \$

Definition: LZ78 Factorization [ZL78]

Given a text T of length n over an alphabet Σ , the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z, f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 ldots f_{i-1} = T[1..j-1]$, then f_i is the longest prefix of T[j..n], such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} \colon f_k = f_i \alpha$$



Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1\\ \$ & SA[i] = 1 \end{cases}$$

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1\\ \$ & SA[i] = 1 \end{cases}$$

c a	b b a	\$
63	7 4 8	5
2 5	1 4 0	3
_ 0		
_		

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	с	а	b	с	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b

- character before the suffix in SA-order
- choose characters cyclic **o** \$ for first suffix

Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic ⁶ \$ for first suffix
- can compute BWT in O(n) time
- for binary alphabet O(n/√lg n) time and
 O(n/ lg n) words space is possible [KK19]

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	С	а	b	с	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b

Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic **6** \$ for first suffix
- can compute BWT in O(n) time
- for binary alphabet O(n/√lg n) time and O(n/ lg n) words space is possible [KK19]

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	С	а	b	с	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b

- definition is not very descriptive
- easy way to compute BWT
- what can we do with the BWT

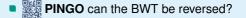
Definition: Burrows-Wheeler Transform

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 1 \\ \$ & SA[i] = 1 \end{cases}$$

- character before the suffix in SA-order
- choose characters cyclic **o** \$ for first suffix
- can compute BWT in O(n) time
- for binary alphabet O(n/√lg n) time and O(n/ lg n) words space is possible [KK19]

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	с	а	b	с	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b

- definition is not very descriptive
- easy way to compute BWT
- what can we do with the BWT



Definition: Cyclic Rotation

Given a text T of length n, the *i*-th cyclic rotation is

 $T^{(i)} = T[i..n]T[1..i)$

i-th cyclic rotation is concatenation of *i*-th suffix and (*i* - 1)-th prefix T = ababcabcabba

 $_{T}(1) \ _{T}(2) \ _{T}(3) \ _{T}(4) \ _{T}(5) \ _{T}(6) \ _{T}(7) \ _{T}(8) \ _{T}(9) \ _{T}(10)_{T}(11)_{T}(12)_{T}(13)$

					-	-			-			
а	b	а	b	с	а	b	с	а	b	b	а	\$
b	а	b	с	а	b	с	а	b	b	а	\$	а
а	b	с	а	b	С	а	b	b	а	\$	а	b
b	с	а	b	с	а	b	b	а	\$	а	b	а
с	а	b	с	а	b	b	а	\$	а	b	а	b
а	b	с	а	b	b	а	\$	а	b	а	b	С
b	С	а	b	b	а	\$	а	b	а	b	С	а
с	а	b	b	а	\$	а	b	а	b	с	а	b
а	b	b	а	\$	а	b	а	b	с	а	b	С
b	b	а	\$	а	b	а	b	С	а	b	С	а
b	а	\$	а	b	а	b	с	а	b	С	а	b
а	\$	а	b	а	b	С	а	b	С	а	b	b
\$	а	b	а	b	с	а	b	С	а	b	b	а

Definition: Cyclic Rotation

Given a text T of length n, the *i*-th cyclic rotation is

 $T^{(i)} = T[i..n]T[1..i)$

i-th cyclic rotation is concatenation of *i*-th suffix and (*i* - 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the **Burrows-Wheeler transform** of the text is the last row of the matrix

T =	ababcabcabba\$	

 $_{T}(1) \ _{T}(2) \ _{T}(3) \ _{T}(4) \ _{T}(5) \ _{T}(6) \ _{T}(7) \ _{T}(8) \ _{T}(9) \ _{T}(10)_{T}(11)_{T}(12)_{T}(13)$

		-	-		-	-			-			
а	b	а	b	с	а	b	с	а	b	b	а	\$
b	а	b	с	а	b	с	а	b	b	а	\$	а
а	b	с	а	b	С	а	b	b	а	\$	а	b
b	с	а	b	с	а	b	b	а	\$	а	b	а
с	а	b	с	а	b	b	а	\$	а	b	а	b
а	b	с	а	b	b	а	\$	а	b	а	b	С
b	С	а	b	b	а	\$	а	b	а	b	С	а
С	а	b	b	а	\$	а	b	а	b	С	а	b
а	b	b	а	\$	а	b	а	b	С	а	b	С
b	b	а	\$	а	b	а	b	с	а	b	С	а
b	а	\$	а	b	а	b	с	а	b	С	а	b
а	\$	а	b	а	b	С	а	b	С	а	b	b
\$	а	b	а	b	С	а	b	С	а	b	b	а

Definition: Cyclic Rotation

Given a text T of length n, the *i*-th cyclic rotation is

 $T^{(i)} = T[i..n]T[1..i)$

i-th cyclic rotation is concatenation of *i*-th suffix and (*i* - 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the **Burrows-Wheeler transform** of the text is the last row of the matrix

T = ababcabcabba

$_{T}(13)_{T}(12)_{T}(1)_{T}(9)_{T}(6)_{T}(3)_{T}(11)_{T}(2)_{T}(10)_{T}(7)_{T}(4)_{T}(8)_{T}(5)$

\$	а	а	а	а	а	b	b	b	b	b	с	С
а	\$	b	b	b	b	а	а	b	С	С	а	а
b	а	а	b	С	С	\$	b	а	а	а	b	b
а	b	b	а	а	а	а	С	\$	b	b	b	С
b	а	с	\$	b	b	b	а	а	b	С	а	а
С	b	а	а	b	с	а	b	b	а	а	\$	b
а	С	b	b	а	а	b	С	а	\$	b	а	b
b	а	с	а	\$	b	с	а	b	а	b	b	а
С	b	а	b	а	b	а	b	С	b	а	а	\$
а	С	b	С	b	а	b	b	а	а	\$	b	а
b	а	b	а	а	\$	с	а	b	b	а	с	b
b	b	а	b	b	а	а	\$	с	С	b	а	а
а	b	\$	С	С	b	b	а	а	а	а	b	b

Definition: Cyclic Rotation

Given a text T of length n, the *i*-th cyclic rotation is

 $T^{(i)} = T[i..n]T[1..i)$

i-th cyclic rotation is concatenation of *i*-th suffix and (*i* - 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the **Burrows-Wheeler transform** of the text is the last row of the matrix

T = ababcabcabba

$_{T}(13)_{T}(12)_{T}(1)_{T}(9)_{T}(6)_{T}(3)_{T}(11)_{T}(2)_{T}(10)_{T}(7)_{T}(4)_{T}(8)_{T}(5)$

\$	а	а	а	а	а	b	b	b	b	b	с	С
а	\$	b	b	b	b	а	а	b	С	С	а	а
b	а	а	b	С	С	\$	b	а	а	а	b	b
а	b	b	а	а	а	а	С	\$	b	b	b	с
b	а	с	\$	b	b	b	а	а	b	С	а	а
С	b	а	а	b	С	а	b	b	а	а	\$	b
а	С	b	b	а	а	b	С	а	\$	b	а	b
b	а	с	а	\$	b	с	а	b	а	b	b	а
С	b	а	b	а	b	а	b	С	b	а	а	\$
а	С	b	с	b	а	b	b	а	а	\$	b	а
b	а	b	а	а	\$	С	а	b	b	а	с	b
b	b	а	b	b	а	а	\$	с	С	b	а	а
а	b	\$	С	С	b	b	а	а	а	а	b	b

First and Last Row

- two important rows in the matrix
- other rows are not needed at all
- there is a special relation between the two rows
 later this lecture

First Row F

contains all characters or the text in sorted order

Last Row L

is the BWT itself

T =	= abab	ocabc	abba	\$

$_{T}(13)_{T}(12)_{T}(1)$ $_{T}(6) _{T}(3) _{T}(11) _{T}(2) _{T}(10) _{T}(7) _{T}(4) _{T}(8) _{T}(5)$ $\tau(9)$ F а а а а b \$ а b b b b а а b С а а а а b \$ b а а а b b а а а \$ b а а h b а С \$ b b b а а b С а а b а а b а b b а а \$ а b b а а b а \$ b а С а \$ b а b а b b а а b а b а b b а b а а а С b b а b b а а \$ а b b а а а а b а b а b b а а \$ b а а L \$ b b а а а b

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

=ab	ab	ca	bc	abl	bas	\$							
	7(13)	₇ (12)	₇ (1)	₇ (9)	₇ (6)	₇ (3)	_T (11)	₇ (2)	_T (10)	₇ (7)	₇ (4)	₇ (8)	₇ (5)
F	\$	а	а	а	а	а	b	b	b	b	b	С	С
	а	\$	b	b	b	b	а	а	b	С	С	а	а
	b	а	а	b	С	С	\$	b	а	а	а	b	b
	а	b	b	а	а	а	а	С	\$	b	b	b	С
	b	а	С	\$	b	b	b	а	а	b	С	а	а
	С	b	а	а	b	С	а	b	b	а	а	\$	b
	а	С	b	b	а	а	b	С	а	\$	b	а	b
	b	а	С	а	\$	b	С	а	b	а	b	b	а
	С	b	а	b	а	b	а	b	С	b	а	а	\$
	а	С	b	С	b	а	b	b	а	а	\$	b	а
	b	а	b	а	а	\$	С	а	b	b	а	С	b
	b	b	а	b	b	а	а	\$	С	С	b	а	а
	а	b	\$	с	с	b	b	а	а	а	а	b	b

ᄂ

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

 T
 a
 b
 a
 b
 c
 a
 b
 a
 \$

 rank
 1
 1
 2
 1
 3
 3
 2
 4
 4
 5
 1

$T={\sf ab}$	ab	ca	bc	abl	bas	\$							
	_T (13)						_T (11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	_T (5)
F	\$	а	а	а	а	а	b	b	b	b	b	С	С
	а	\$	b	b	b	b	а	а	b	С	С	а	а
	b	а	а	b	С	С	\$	b	а	а	а	b	b
	а	b	b	а	а	а	а	С	\$	b	b	b	С
	b	а	С	\$	b	b	b	а	а	b	С	а	а
	С	b	а	а	b	С	а	b	b	а	а	\$	b
	а	С	b	b	а	а	b	С	а	\$	b	а	b
	b	а	С	а	\$	b	С	а	b	а	b	b	а
	С	b	а	b	а	b	а	b	С	b	а	а	\$
	а	С	b	С	b	а	b	b	а	а	\$	b	а
	b	а	b	а	а	\$	С	а	b	b	а	С	b
	b	b	а	b	b	а	а	\$	С	С	b	а	а
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

 T
 a
 b
 a
 b
 c
 a
 b
 a
 \$

 rank
 1
 1
 2
 1
 3
 3
 2
 4
 4
 5
 1

T = ab	ab	ca	bca	abl	bas	\$								
	7(13)	_T (12)	_T (1)	₇ (9)	₇ (6)	₇ (3)	_T (11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	₇ (5)	
F	\$		a)-1	a	a	a	b	b	b	b	b	C 1		
	a	\$	b	b	b	b	a	a	b	С	c	а	a	/
	b	а	а	b	С	С	\$	b	а	а	а	b	b	
	а	b	b	а	а	а	а	С	\$	b	b	b	С	
	b	а	С	\$	b	b	b	а	а	b	С	а	а	
	С	b	а	а	b	С	а	b	b	а	а	\$	b	
	а	С	b	b	а	а	b	С	а	\$	b	а	b	
	b	а	С	а	\$	b	С	а	b	а	b	b	а	
	С	b	а	b	а	b	а	b	С	b	а	а	\$	
	а	С	b	С	b	а	b	b	а	а	\$	b	а	
	b	а	b	а	а	\$	С	а	b	b	а	С	b	
	b	b	а	b	b	а	а	\$	С	С	b	а	а	
L	а	b	\$	С	С	b	b	а	а	а	а	b	b	

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

T a b a b c a b c a b b a \$ *rank* 1 1 2 2 1 3 3 2 4 4 5 5 1

T = ababcabcabba\$ $_{T}(13)_{T}(12)_{T}(1)_{T}(9)_{T}(6)_{T}(3)_{T}(11)_{T}(2)_{T}(10)_{T}(7)_{T}(4)_{T}(8)_{T}(5)$ F b al al al a K К а \$ b c \$ b b b b a a b c la a а ala b a a b b а а а а b a b a b\a\b\ c\b а \$ b/ C С b a \a \$ а b а 1 0 b a a/ а \$ bla b b a C b a 1 а b b a alala

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

T a b a b c a b c a b b a \$ rank 1 1 2 2 1 3 3 2 4 4 5 5 1

T = ababcabcabba $_{T}(13)_{T}(12)_{T}(1)_{T}(9)_{T}(6)_{T}(3)_{T}(11)_{T}(2)_{T}(10)_{T}(7)_{T}(4)_{T}(8)_{T}(5)$ F b al al al a К а \$ К b c \$ b b b a a b c la a а ala b a a b b а а а а b a b a b\a\b\ c\b а all \$ b/ C С b a \a \$ а \b b а a а а l a/ b al

Definition: Rank

Given a text *T* over an alphabet *Sigma*, the rank of a character at position $i \in [1, n]$ is

 $rank(i) = |\{j \in [1, i] : T[i] = T[j]\}|$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT
- order of ranks is the same in first and last row

T a b a b c a b c a b b a \$ rank 1 1 2 2 1 3 3 2 4 4 5 5 1

T = ababcabcabba\$ $_{T}(13)_{T}(12)_{T}(1)_{T}(9)_{T}(6)_{T}(3)_{T}(11)_{T}(2)_{T}(10)_{T}(7)_{T}(4)_{T}(8)_{T}(5)$ F b allalla а a\1 \$ К К b c \$ b b b a a b c la a b ala b a a b b а а а b a b a c\b а all \$ b\la\lb\ b/ C С b a \a \$ а b a а l a/ а b al

Karlsruhe Institute of Technology

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

T = ababcabcabba\$

ub	_	_	_	_		_	_	_	_	_	_	_	_
	_T (13)	7(12)	_T (1)	₇ (9)	₇ (6)	_T (3)	T(11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	_T (5)
F	\$	а	а	а	а	а	b	b	b	b	b	С	С
	а	\$	b	b	b	b	а	а	b	С	С	а	а
	b	а	а	b	С	С	\$	b	а	а	а	b	b
	а	b	b	а	а	а	а	С	\$	b	b	b	С
	b	а	С	\$	b	b	b	а	а	b	С	а	а
	С	b	а	а	b	С	а	b	b	а	а	\$	b
	а	С	b	b	а	а	b	С	а	\$	b	а	b
	b	а	С	а	\$	b	С	а	b	а	b	b	а
	С	b	а	b	а	b	а	b	С	b	а	а	\$
	а	С	b	С	b	а	b	b	а	а	\$	b	а
	b	а	b	а	а	\$	С	а	b	b	а	С	b
	b	b	а	b	b	а	а	\$	С	С	b	а	а
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

T =	abab	cabca	bba\$
	abub	cubcc	ibbuφ

	T(13)	7(12)	_T (1)	₇ (9)	₇ (6)	₇ (3)	_T (11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	_T (5)
F	\$	а	а	а	а	а	b	b	b	b	b	С	С
	а	•	b	b	b	b	а	а	b	С	С	а	а
	b	а	а	b	С	С	\$	b	а	а	а	b	b
	а	b	b	а	а	а	а	С	\$	b	b	b	С
	b	а	С	\$	b	b	b	а	а	b	С	а	а
	С	b	а	а	b	С	а	b	b	а	а	\$	b
	а	С	b	b	а	а	b	С	а	\$	b	а	b
	b	а	С	а	\$	b	С	а	b	а	b	b	а
	С	b	а	b	а	b	а	b	С	b	а	а	\$
	а	С	b	С	b	а	b	b	а	а	\$	b	а
	b	а	b	а	а	\$	С	а	b	b	а	С	b
	b	b	а	b	b	а	а	\$	С	С	b	а	а
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

Г	эh	ah	cal	oca	hh	ъ¢	
	 au	av	cai	JCa	มม	aэ	

	₇ (13)	7(12)	_T (1)	₇ (9)	₇ (6)	_T (3)	_T (11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	_T (5)
F	\$	а	а	а	а	а	b	b	b	b	b	С	С
	а	•	b	b	b	b	a	а	b	С	С	а	а
	b	а	а	b	С	9	\$	b	а	а	а	b	b
	а	b	b	а	а	a	а	С	\$	b	b	b	С
	b	а	С	\$	b/	b	b	а	а	b	С	а	а
	С	b	а	а	þ	С	а	b	b	а	а	\$	b
	а	С	b	b	а	а	b	С	а	\$	b	а	b
	b	а	С	1	\$	b	С	а	b	а	b	b	а
	С	b	а	b	а	b	а	b	С	b	а	а	\$
	а	С	b	С	b	а	b	b	а	а	\$	b	а
	b	а	þ	а	а	\$	С	а	b	b	а	С	b
	b	b	а	b	b	а	а	\$	С	С	b	а	а
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

= aba	abo	cab	oca	bb	a\$									
	_T (13)	_T (12)	₇ (1)	₇ (9)	₇ (6)	₇ (3)	_T (11)	₇ (2)	_T (10)	_T (7)	₇ (4)	₇ (8)	₇ (5)	
F	\$	а	а	а	а	а	b	b	b	b	b	С	С	
	a	•	b	b	b	b	а	а	b	С	С	а	а	
	b	а	а	b	С	1	\$	b	а	а	а	b	b	
	а	b	b	а	а	a	а	С	\$	b	b	b	С	
	b	а	С	\$	b	b	b	а	а	b	С	а	а	
	С	þ	а	а	þ	С	а	b	b	а	а	\$	b	
	а	¢	b	b	а	а	b	С	а	\$	b	а	b	
	b	а	С	1	\$	b	С	а	b	а	b	b	а	
	С	b	а	b	а	b	а	b	С	b	а	а	\$	
	а	С	b	С	b	а	b	b	а	а	\$	b	а	
	b	а	Y	а	а	\$	С	а	b	b	а	С	b	
	b	b	а	b	b	а	а	\$	С	С	b	а	а	
L	а	b	\$	С	С	b	b	а	а	а	а	b	b	

- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

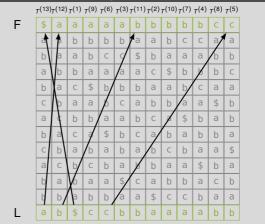
Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

T = ababcabcabba



- want to map characters from last to first row
- why do we want this?
 - helps with pattern matching
 - transform BWT back to T

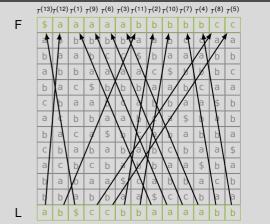
Definition: LF-mapping

Given a text T of length n and its suffix array SA, then the *LF*-mapping is a permutation of [1, n], such that

 $LF(i) = j \iff SA[j] = SA[i] - 1$

- similar to definition of BWT
- requires SA or explicitly saving LF-mapping

T = ababcabcabba



Definition: C-Array and Rank-Function

Given a text *T* of length *n* over an alphabet Σ , $\alpha \in \Sigma$, and $i \in [1, n]$ then

 $C[\alpha] = |i \in [1, n]: T[i] < \alpha|$

and

 $rank_{\alpha}(i) = |\{j \in [1, i] \colon T[j] = \alpha\}|$

- C contains total number of smaller characters
- rank_{α} contains number of α 's in prefix T[1..i]
- $rank_{\alpha}$ can be computed in O(1) time [FM00]

Definition: C-Array and Rank-Function

Given a text *T* of length *n* over an alphabet Σ , $\alpha \in \Sigma$, and $i \in [1, n]$ then

 $C[\alpha] = |i \in [1, n]: T[i] < \alpha|$

and

 $rank_{\alpha}(i) = |\{j \in [1, i] \colon T[j] = \alpha\}|$

- C contains total number of smaller characters
- rank_{α} contains number of α 's in prefix T[1..i]
- $rank_{\alpha}$ can be computed in O(1) time [FM00]

- T a b a b c a b c a b b a \$ rank 1 1 2 2 1 3 3 2 4 4 5 5 1
- rank now on BWT
- C is exclusive prefix sum over histogram

Definition: C-Array and Rank-Function

Given a text *T* of length *n* over an alphabet Σ , $\alpha \in \Sigma$, and $i \in [1, n]$ then

 $C[\alpha] = |i \in [1, n]: T[i] < \alpha|$

and

 $rank_{\alpha}(i) = |\{j \in [1, i] \colon T[j] = \alpha\}|$

- C contains total number of smaller characters
- rank_{α} contains number of α 's in prefix T[1..i]
- $rank_{\alpha}$ can be computed in O(1) time [FM00]

T a b a b c a b c a b b a \$ *rank* 1 1 2 2 1 3 3 2 4 4 5 5 1

- rank now on BWT
- C is exclusive prefix sum over histogram

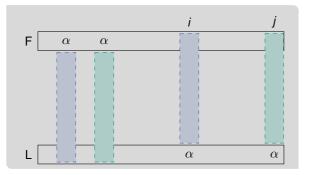
Definition: *LF*-Mapping (alt.)

Given a *BWT*, its *C*-array, and its *rank*-Function, then

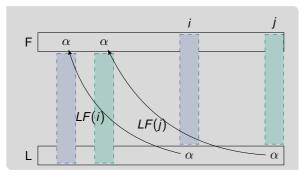
$$LF(i) = C[BWT[i]] + rank_{BWT[i]}(i)$$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

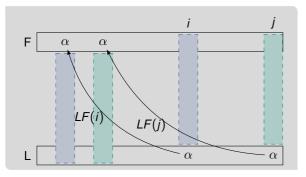
- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text



- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

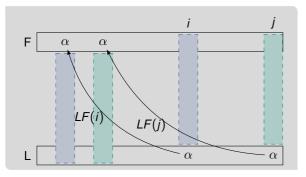


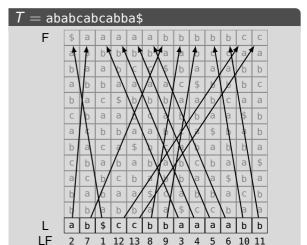
- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text



T = aba	abo	cab	oca	abb	a\$									
F	\$	а	а	а	а	а	b	b	b	b	b	С	С	
	а	\$	b	b	b	b	а	а	b	С	С	а	а	
	b	а	а	b	С	С	\$	b	а	а	а	b	b	
	а	b	b	а	а	а	а	С	\$	b	b	b	С	
	b	а	С	\$	b	b	b	а	а	b	С	а	а	
	С	b	а	а	b	С	а	b	b	а	а	\$	b	
	а	С	b	b	а	а	b	С	а	\$	b	а	b	
	b	а	С	а	\$	b	С	а	b	а	b	b	а	
	С	b	а	b	а	b	а	b	С	b	а	а	\$	
	а	С	b	С	b	а	b	b	а	а	\$	b	а	
	b	а	b	а	а	\$	С	а	b	b	а	С	b	
	b	b	а	b	b	а	а	\$	С	С	b	а	а	
L	а	b	\$	с	С	b	b	а	а	а	а	b	b	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11	

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text





- characters (w.r.t. text) preserve order in L and F
- *LF*-mapping returns previous character in text

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
	а												
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

•
$$T[12] = L[1] = a$$
 and $k = LF(1) = 2$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

•
$$T[13] =$$
\$ and $k = 1$

•
$$T[12] = L[1] = a$$
 and $k = LF(1) = 2$

•
$$T[11] = L[2] = b$$
 and $k = LF(2) = 7$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

•
$$T[12] = L[1] = a$$
 and $k = LF(1) = 2$

•
$$T[11] = L[2] = b$$
 and $k = LF(2) = 7$

•
$$T[10] = L[7] = b$$
 and $k = LF(7) = 9$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

T[12] =
$$L[1]$$
 = a and $k = LF(1) = 2$

•
$$T[11] = L[2] = b$$
 and $k = LF(2) = 7$

•
$$T[10] = L[7] = b$$
 and $k = LF(7) = 9$

•
$$T[9] = L[9] = a$$
 and $k = LF(9) = 4$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

T[12] =
$$L[1]$$
 = a and $k = LF(1) = 2$

•
$$T[11] = L[2] = b$$
 and $k = LF(2) = 7$

T[10] =
$$L[7]$$
 = b and $k = LF(7) = 9$

•
$$T[9] = L[9] = a$$
 and $k = LF(9) = 4$

•
$$T[9] = L[4] = c$$
 and $k = LF(4) = 12$

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- T[n] =\$ and $T^{(n)}$ in first row
- apply LF-mapping on result to obtain any character

$$T[n-i] = L[\underbrace{LF(LF(\dots(LF(1))\dots))]}_{i-1 \text{ times}}$$

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	с	с	b	b	а	а	а	а	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

• . . .

T[12] =
$$L[1]$$
 = a and $k = LF(1) = 2$

•
$$T[11] = L[2] = b$$
 and $k = LF(2) = 7$

T[10] =
$$L[7]$$
 = b and $k = LF(7) = 9$

•
$$T[9] = L[9] = a$$
 and $k = LF(9) = 4$

•
$$T[9] = L[4] = c$$
 and $k = LF(4) = 12$

Properties of the BWT: Runs

- BWT is reversible
- can be used for lossless compression

Definition: Run (simplified)

Given a text T of length n, we call its substring T[i..j] a run, if

- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$

• (To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture)

	1	2	3	4	5	6	7	8	9	0	11	12	13
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

Properties of the BWT: Runs

- BWT is reversible
- can be used for lossless compression

Definition: Run (simplified)

Given a text T of length n, we call its substring T[i..j] a run, if

- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$

• (To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture)

	_	_	-	-	_	-	-	-	9	-			
L	а	b	\$	С	С	b	b	а	а	а	а	b	b

- BWT contains lots of runs
- same context is often grouped together II

Compressing the BWT: Run-Length Compression

Definition: Run-Length Encoding

Given a text *T*, represent each run $T[i..i + \ell)$ as tuple $(T[i], \ell)$

1 2 3 4 5 6 7 8 9 0 11 12 13 BWT a b \$ c c b b a a a a b b (a, 1) (b, 1) (c, 2)

T = ababcabcabba\$

(b, 2)
(a, 4)
(b, 2)

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 o no theoretical improvement but good in practice

	-	_	-		•	•		•		•	11		
BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 o no theoretical improvement but good in practice

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 o no theoretical improvement but good in practice

		_	-		•	•	•	•		•			13
BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 o no theoretical improvement but good in practice

	-	_	-	•	-	•	•	•		•			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- X = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

			-	-	-	-	-	-	-	-			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- X = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

	_	_	_	-	-	-	-	-	-	-			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- *X* = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c
- *MTF* = 233 and *X* = \$, b, a, c
- MTF = 2334 and X = c, \$, b, a

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 o no theoretical improvement but good in practice

	-	_	-	•	-	•	•	~	-	•			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- *X* = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c
- *MTF* = 233 and *X* = \$, b, a, c
- MTF = 2334 and X = c, \$, b, a
- MTF = 23341 and X = c, \$, b, a

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

	-	_	-	•	-	•	•	~		•			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- *X* = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c
- *MTF* = 233 and *X* = \$, b, a, c
- MTF = 2334 and X = c, \$, b, a
- MTF = 23341 and X = c, \$, b, a
- MTF = 233411 and X = c, \$, b, a

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

T = ababcabcabba\$

	-	_	-	•	-	•	•	~	-	•			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- *X* = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c
- *MTF* = 233 and *X* = \$, b, a, c
- MTF = 2334 and X = c, \$, b, a
- MTF = 23341 and X = c, \$, b, a
- MTF = 233411 and X = c, \$, b, a

• . . .

Definition: Move-To-Front Encoding

Given a text *T* over an alphabet $\Sigma = [1, \sigma]$, the MTF encoding *MTF*(*T*) of the text is computed as follows

- start with a list $X = \Sigma[1], \Sigma[2], \dots, \Sigma[\sigma]$
- scan text from left to right, for character T[i]
 - append position of T[i] in X to MTF(T) and
 - move T[i] to front of X
- MTF encoding can easily be reverted I
- consists of many small numbers
- runs are preserved
- use Huffman on encoding
 no theoretical improvement but good in practice

	-	_	-		•	•	•	•		•			13
BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b

- *X* = \$, a, b, c
- *MTF* = 2 and *X* = a, \$, b, c
- *MTF* = 23 and *X* = b, a, \$, c
- *MTF* = 233 and *X* = \$, b, a, c
- MTF = 2334 and X = c, \$, b, a
- MTF = 23341 and X = c, \$, b, a
- MTF = 233411 and X = c, \$, b, a
- . . .
- *MTF* = 23341131411121

Pattern Matching using the BWT

Recap

Given a text *T* of length *n* over an alphabet Σ , $\alpha \in \Sigma$, and $i \in [1, n]$ then

 $C[\alpha] = |i \in [1, n]: T[i] < \alpha|$

and

 $rank_{\alpha}(i) = |\{j \in [1, i] \colon T[j] = \alpha\}|$

- find interval of occurrences in SA using BWT
- text from BWT is backwards
- search pattern backwards

- interval for α is $[C[\alpha 1], C[\alpha + 1]]$
- find sub-interval using $rank_{\alpha}$

example on the board

Backwards Search in the BWT

Function BackwardsSearch(P[1..n], C, rank): s = 1, e = nfor i = m, ..., 1 do

) + 1

$$\begin{array}{c|c} s = c[P[i]] + rank_{P[i]}(s-1) \\ s = c[P[i]] + rank_{P[i]}(e) \\ s = c[P[i]] + rank_{P[i]}(e) \\ if s > e \text{ then} \\ e = c[P[i]] + rank_{P[i]}(e) \\ return \emptyset \\ return [s, e] \end{array}$$

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every s-th SA position in SA' sample

Karlsruhe Institute of Technology

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every s-th SA position in SA' sample
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using LF
- if SA[i] = j then SA[LF(i)] = j 1

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every s-th SA position in SA' sample
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using LF
- if SA[i] = j then SA[LF(i)] = j 1

- rank₁(i) in bit vector is number of sample
- SA'[rank₁(i)] is sampled value
- SA'[rank₁(i)] + #steps till sample found is correct SA value

- reporting queries require SA
- storing whole SA requires too much space
- better: sample every s-th SA position in SA' sample
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using LF
- if SA[i] = j then SA[LF(i)] = j 1

- rank₁(i) in bit vector is number of sample
- SA'[rank₁(i)] is sampled value
- SA'[rank₁(i)] + #steps till sample found is correct SA value
- finding a sample requires $O(s \cdot t_{rank})$ time

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

std::vector<char/int/...>

- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
- i/64 is position in 64-bit word
- i%64 is position in word

std::vector<char/int/...>

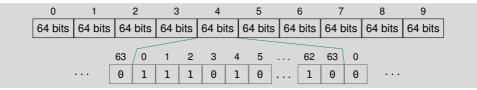
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
- i/64 is position in 64-bit word
- i%64 is position in word




```
// There is a bit vector
std::vector<uint64_t> bit_vector;
```

```
// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> ( 63 - (i % 64)) ) & 1ULL;
```



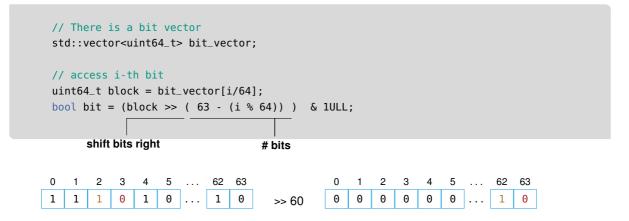
```
// There is a bit vector
std::vector<uint64_t> bit_vector;
// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> ( 63 - (i % 64)) ) & 1ULL;
shift bits right
0 1 2 3 4 5 ... 62 63
```

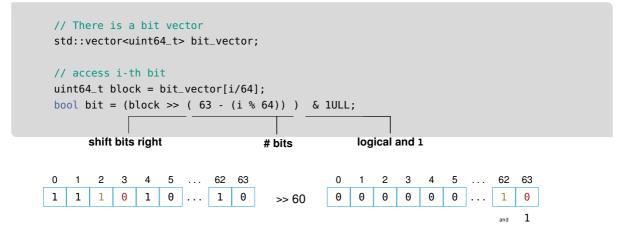
1 0 ... 1

0

1 1 0

1





(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

-			-		-	 -	
1	1	1	0	1	0	 1	0

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63	62	 5	4	3	2	1	0
0	1	 0	1	0	1	1	1

$$0 0 \dots 1 1 0 0 1 0$$

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

-			-		-	 -	
1	1	1	0	1	0	 1	0

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63	62	 5	4	3	2	1	0
0	1	 0	1	0	1	1	1

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

-			-		-	 -	
1	1	1	0	1	0	 1	0



assembler code:	mov	ecx,	edi
	not	есх	
	shr	rsi,	cl
	mov	eax,	esi
	and	eax,	1

(block >> (i%64)) & 1ULL;

fill bit vector right to left

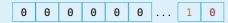
63	62		5	4	3	2	1	0
0	1]	0	1	0	1	1	1

$$0 0 \dots 1 1 0 0 1 0$$

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0							
1	1	1	0	1	0	 1	0



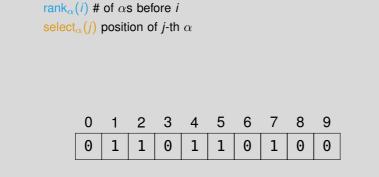
assembler code:	mov	ecx,	edi
	not	есх	
	shr	rsi,	cl
	mov	eax,	esi
	and	eax,	1

(block >> (i%64)) & 1ULL;

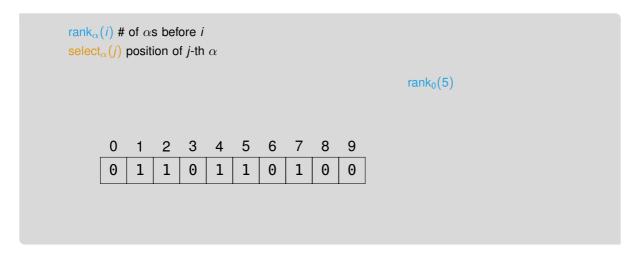
fill bit vector right to left

63	62		5	4	3	2	1	0
0	1]	0	1	0	1	1	1

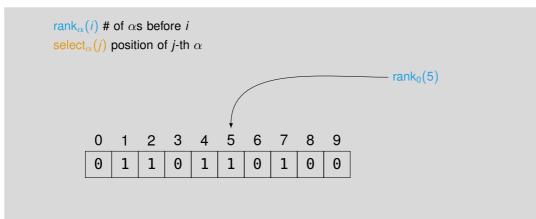
assembler code: mov ecx, edi shr rsi, cl mov eax, esi and eax, 1

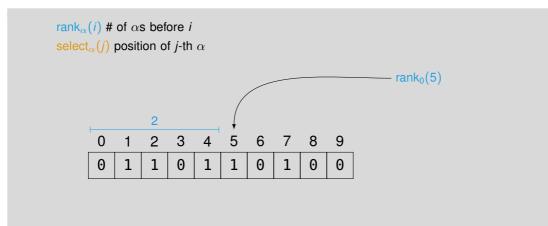


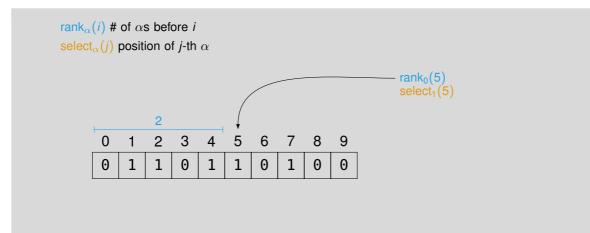
Institute for Theoretical Informatics, Algorithm Engineering

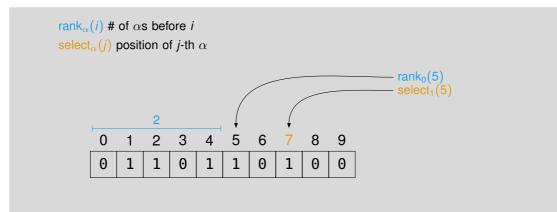


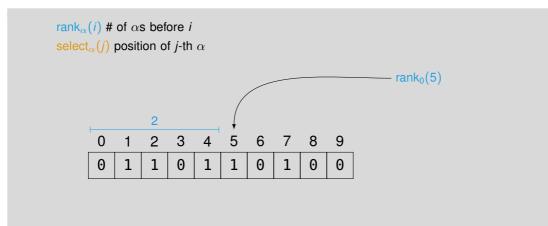
Institute for Theoretical Informatics, Algorithm Engineering

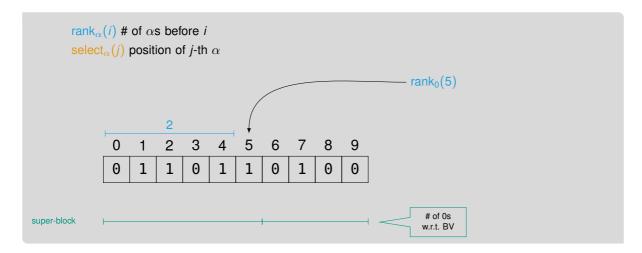


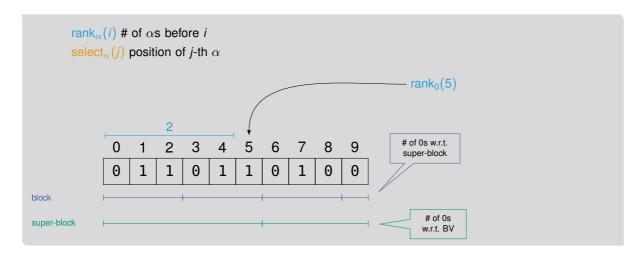


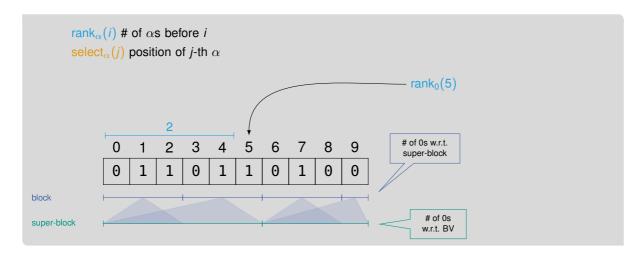












- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- for all \[\frac{n}{s'} \] super blocks, store number of 0s from beginning of bit vector to end of super-block

•
$$n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$$
 bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

for all \[\frac{n}{s} \] blocks, store number of 0s from beginning of super block to end of block

• $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

for all \[\frac{n}{s'} \] super blocks, store number of 0s from beginning of bit vector to end of super-block

•
$$n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$$
 bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

 for all \[\frac{n}{s} \] blocks, store number of 0s from beginning of super block to end of block

• $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

for all \[\frac{n}{s'} \] super blocks, store number of 0s from beginning of bit vector to end of super-block

•
$$n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$$
 bits of space

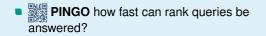
- for all length-s bit vectors, for every position i store number of 0s up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

for all [n]
 s]
 blocks, store number of 0s from beginning of super block to end of block

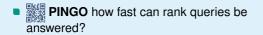
• $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- for all \[\frac{n}{s'} \] super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space



- for all length-s bit vectors, for every position i store number of 0s up to i
 2^{lgn}/₂ = a lg a = O(√n |g n |g |g n) = a(n) bits a
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- for all [n/s'] super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space



- for all \[\frac{n}{s} \] blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space
- for all length-s bit vectors, for every position i store number of 0s up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space
- query in O(1) time

$$rank_0(i) = i - rank_1(i)$$

The FM-Index (First Look) [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
 wavelet trees are topic of next lecture!
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Space Requirements

- wavelet tree: $n \lceil \lg \sigma \rceil (1 + o(1))$ bits
- *C*-array: $\sigma \lceil \lg n \rceil$ bits n(1 + o(1)) bits if $\sigma \ge \frac{n}{\lg n}$
- sampled suffix array: $\frac{n}{s} \lceil \lg n \rceil$ bits
- bit vector: n(1 + o(1)) bits

Lemma: FM-Index Space Requirements

Given a text *T* of length *n* over an alphabet of size σ , the FM-index requires $O(n \lg \sigma)$ bits of space

• space and time bounds can be achieved with $s = \lg_{\sigma} n$

Karlsruhe Institute of Technology

Conclusion and Outlook

This Lecture

- Burrows-Wheeler transform
- introduction to FM-index

Linear Time Construction

Conclusion and Outlook

Conclusion and Outlook

This Lecture Linear Time Construction Burrows-Wheeler transform ST introduction to FM-index ST efficient bit vectors ILZ rank queries on bit vectors BWT

Next Lecture

- wavelet trees
- more on FM-index

Bibliography I

- [BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Technical report. 1994.
- [FM00] Paolo Ferragina and Giovanni Manzini. "Opportunistic Data Structures with Applications". In: FOCS. IEEE Computer Society, 2000, pages 390–398. DOI: 10.1109/SFCS.2000.892127.
- [KK19] Dominik Kempa and Tomasz Kociumaka. "String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure". In: *STOC*. ACM, 2019, pages 756–767.
- [ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: *IEEE Trans. Inf. Theory* 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.
- [ZL78] Jacob Ziv and Abraham Lempel. "Compression of Individual Sequences via Variable-Rate Coding". In: *IEEE Trans. Inf. Theory* 24.5 (1978), pages 530–536. DOI: 10.1109/TIT.1978.1055934.