Text Indexing

Lecture 07: FM-Index and r-Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-12-12-13:17

https://pingo.scc.kit.edu/022183

Recap: Wavelet Trees

10,7$]$									
0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Wavelet Trees

Recap: Wavelet Trees

Recap: Wavelet Trees

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Wavelet Trees

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

$\operatorname{rank}_{6}(9)$

Recap: Wavelet Trees

Recap: Wavelet Trees

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Wavelet Trees

0	1	6	7	1	5	4	2	6	3
0	0	1	1	0	1	1	0	1	0
0	0	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1

Recap: Compressed Wavelet Trees

0	1	3	7	1	5	4	2	6	3
0	1	1	0	1	0	0	0	0	1
0	7	5	4	2	6	1	3	1	3
0	1	0	0	0	1	1	0	1	0
0	5	4	2	7	6				
1	0	0	1	0	1				
5	4	0	2						
0	1	1	0						

build wavelet tree for compressed text

- compress text using bit-wise negated canonical Huffman-codes

Recap: Compressed Wavelet Trees

0	1	3	7	1	5	4	2	6	3
0	1	1	0	1	0	0	0	0	1
0	7	5	4	2	6	1	3	1	3
0	1	0	0	0	1	1	0	1	0
0	5	4	2	7	6				
1	0	0	1	0	1				
5	4	0	2						
0	1	1	0						

build wavelet tree for compressed text

- compress text using bit-wise negated canonical Huffman-codes
- can a wavelet tree be compressed further?
- intervals are only missing to the right (white space)
- no holes allow for easy querying

Recap: Compressed Wavelet Trees

0	1	3	7	1	5	4	2	6	3
0	1	1	0	1	0	0	0	0	1
0	7	5	4	2	6	1	3	1	3
0	1	0	0	0	1	1	0	1	0
0	5	4	2	7	6				
1	0	0	1	0	1				
5	4	0	2						
0	1	1	0						

build wavelet tree for compressed text

- compress text using bit-wise negated canonical Huffman-codes
- can a wavelet tree be compressed further?
- 䪰蕮 PINGO are there compressed bit vectors with $O(1)$ access time?
- intervals are only missing to the right (white space)
- no holes allow for easy querying

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure
- split bit vector into (super-)blocks
- blocks of size $s=\frac{\lg n}{2}$
- super-blocks of size $s^{\prime}=s^{2}$

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure
- split bit vector into (super-)blocks
- blocks of size $s=\frac{\lg n}{2}$
- super-blocks of size $s^{\prime}=s^{2}$

Array C

- number of ones in i-th block

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure
- split bit vector into (super-)blocks
- blocks of size $s=\frac{\lg n}{2}$
- super-blocks of size $s^{\prime}=s^{2}$

Array C

- number of ones in i-th block

Lookup-Tables L_{i}

- for $i \in[0, s]$ store lookup-table containing all bit vectors with i one bits

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure
- split bit vector into (super-)blocks
- blocks of size $s=\frac{\lg n}{2}$
- super-blocks of size $s^{\prime}=s^{2}$

Array C

- number of ones in i-th block

Lookup-Tables L_{i}

- for $i \in[0, s]$ store lookup-table containing all bit vectors with i one bits
- use variable-length codes to identify content of block
- concatenate all codes in bit vector V

Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure
- split bit vector into (super-)blocks
- blocks of size $s=\frac{\lg n}{2}$
- super-blocks of size $s^{\prime}=s^{2}$

Array C

- number of ones in i-th block

Lookup-Tables L_{i}

- for $i \in[0, s]$ store lookup-table containing all bit vectors with i one bits
- use variable-length codes to identify content of block
- concatenate all codes in bit vector V

Bit Vector V

- let k_{i} be number of ones in i-th block
- use $\left\lceil\lg \binom{s}{k_{i}}\right\rceil$ bits to encode block (3) position in lookup-table
- concatenate all codes

Bit Vector Compression (2/2)

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- $\lceil\lg n\rceil$ bits per entry

Bit Vector Compression (2/2)

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- $\lceil\lg n\rceil$ bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- $O(\lg \lg n)$ bits per entry

Bit Vector Compression (2/2)

Array SBlock

- for every super-block i, SBlock[$i]$ contains position of encoding of first block in i-th super-block in V
- $\lceil\lg n\rceil$ bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- $O(\lg \lg n)$ bits per entry

Lemma: Compressed Bit Vectors

A bit vector of size n containing k ones can be represented using $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits allowing $O(1)$ time access to individual bits

Bit Vector Compression (2/2)

Array SBlock

- for every super-block i, SBlock[$i]$ contains position of encoding of first block in i-th super-block in V
- $\lceil\lg n\rceil$ bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- $O(\lg \lg n)$ bits per entry

Lemma: Compressed Bit Vectors

A bit vector of size n containing k ones can be represented using $O\left(k \lg \frac{n}{k}\right)+o(n)$ bits allowing $O(1)$ time access to individual bits

Proof (Sketch space requirements)

- $|C|=O\left(\frac{n}{s} \lg s\right)=o(n)$ bits
- \mid SBlock $\left\lvert\,=O\left(\frac{n}{s^{\prime}} \lg n\right)=o(n)\right.$ bits
- \mid Block $\left\lvert\,=O\left(\frac{n}{s} \lg s\right)=o(n)\right.$ bits
- $\sum_{k=0}^{s}\left|L_{k}\right| \leq(s+1) 2^{s} s=o(n)$ bits
- $|V|=\sum_{i=1}^{[n / s]}\left\lceil\left[\lg \binom{s}{k_{i}}\right] \leq \lg \binom{n}{k}+n / s \leq\right.$ $\lg \left((n / k)^{k}\right)+n / s=k \lg \frac{n}{k}+O\left(\frac{n}{\lg n}\right)$ bits

Recap: Backwards Search in the BWT

```
Function BackwardsSearch( \(P\) [1..n], C, rank):
    \(s=1, e=n\)
    for \(i=m, \ldots, 1\) do
        \(s=C[P[i]]+\operatorname{rank}_{P[i]}(s-1)+1\)
        \(e=C[P[i]]+\operatorname{rank}_{P[i]}(e)\)
        if \(s>e\) then
            return \(\emptyset\)
    return \([s, e]\)
```

- no access to text or $S A$ required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

The FM-Index [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Lemma: FM-Index

Given a text T of length n over an alphabet of size σ, the FM-index requires $O(n \lg \sigma)$ bits of space and can answer counting queries in $O(m \lg \sigma)$ time and reporting queries in $O(o c c+m \lg \sigma)$ time

The FM-Index [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Lemma: FM-Index

Given a text T of length n over an alphabet of size σ, the FM-index requires $O(n \lg \sigma)$ bits of space and can answer counting queries in $O(m \lg \sigma)$ time and reporting queries in $O(o c c+m \lg \sigma)$ time

Space Requirements

- wavelet tree: $n\lceil\lg \sigma\rceil(1+o(1))$ bits
- C-array: $\sigma\lceil\lg n\rceil$ bits © $n(1+o(1))$ bits if $\sigma \geq \frac{n}{\lg n}$
- sampled suffix array: $\frac{n}{s}\lceil\lg n\rceil$ bits
- bit vector: $n(1+o(1))$ bits
- space and time bounds can be achieved with $s=\lg _{\sigma} n$

Conclusion FM-Index

- FM-index is easy to compress
- wavelet tree on BWT can be compressed
- bit vector can be compressed
- very small in comparison with suffix tree or suffix array
- compression does not make use of structure of BWT (3) wavelet trees are compressed using Huffman-codes

Conclusion FM-Index

- FM-index is easy to compress
- wavelet tree on BWT can be compressed
- bit vector can be compressed
- very small in comparison with suffix tree or suffix array
- compression does not make use of structure of BWT (3) wavelet trees are compressed using Huffman-codes

Definition: Run (simplified, recap)

Given a text T of length n, we call its substring $T[i . . j]$ a run, if

- $T[k]=T[\ell]$ for all $k, \ell \in[i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$
(3) (To be more precise, this is a definition for a run of a periodic substring with smallest period 1 , but this is not important for this lecture

Motivation: r-Index

- next: compressed index
- how to measure compressibility?

Motivation: r-Index

- next: compressed index
- how to measure compressibility?

Measure for Compressibility

- k-th order empirical entropy H_{k}
- number of $L Z$ factors z
- number of $B W T$ runs r

Motivation: r-Index

- next: compressed index
- how to measure compressibility?

Measure for Compressibility

- k-th order empirical entropy H_{k}
- number of LZ factors z
- number of $B W T$ runs r
- z and r not blind to repetitions
- how do they relate?

Motivation: r-Index

- next: compressed index
- how to measure compressibility?

Measure for Compressibility

- k-th order empirical entropy H_{k}
- number of LZ factors z
- number of $B W T$ runs r
- z and r not blind to repetitions
- how do they relate?

Lemma: BWT runs and LZ factors [KK20]

Given a text T of length n. Let z be the number of LZ77 factors and r the number of runs in T's BWT, then

$$
r \in O\left(z \lg ^{2} n\right)
$$

Motivation: r-Index

- next: compressed index
- how to measure compressibility?

Measure for Compressibility

- k-th order empirical entropy H_{k}
- number of LZ factors z
- number of $B W T$ runs r
- z and r not blind to repetitions
- how do they relate?

Lemma: BWT runs and LZ factors [KK20]

Given a text T of length n. Let z be the number of LZ77 factors and r the number of runs in T 's $B W T$, then

$$
r \in O\left(z \lg ^{2} n\right)
$$

- more details in next lecture

Main Part of Backwards-Search

```
Function BackwardsSearch( \(P\) [1..n], C, rank):
    \(s=1, e=n\)
    for \(i=m, \ldots, 1\) do
        \(s=C[P[i]]+\operatorname{rank}_{P[i]}(s-1)+1\)
        \(e=C[P[i]]+\operatorname{rank}_{P[i]}(e)\)
        if \(s>e\) then
            return \(\emptyset\)
return \([s, e\) ]
```


The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures \square

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in $B W T$
- build wavelet tree for L^{\prime}

The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures \qquad

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in $B W T$
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in $B W T$
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

- $C^{\prime}[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in BWT
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

- $C^{\prime}[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

Bit Vector B

- compressed bit vector of length n containing ones at positions where BWT runs start and rank-support

$\operatorname{rank}_{\alpha}(B W T, i)$ with r-Index

- compute number j of run $\left(j=\operatorname{rank}_{1}(B, i)\right)$
- compute position k in $R\left(k=C^{\prime}[\alpha]\right)$
- compute number ℓ of α runs before the j-th run $\left(\ell=\operatorname{rank}_{\alpha}\left(L^{\prime}, j-1\right)\right)$
- compute number k of α s before the j-th run ($k=R[k+\ell]$)
- compute character β of run ($\left.\beta=L^{\prime}[j]\right)$
- if $\alpha \neq \beta$ return k (i is not in the run
- else return $k+i-l[j]+1$ © i is in the run

Lemma: Space Requirements r-Index

Given a text T of length n over an alphabet of size σ that has $r B W T$ runs, then its r-index requires

$$
O(r \lg n) \text { bits }
$$

and can answer rank-queries on the $B W T$ in $O(\lg \sigma)$. Given a pattern of length m, the r-index can answer pattern matching queries in time

$$
O(m \lg \sigma)
$$

The r-Index (3/3)

Lemma: Space Requirements r-Index

Given a text T of length n over an alphabet of size σ that has $r B W T$ runs, then its r-index requires

$$
O(r \lg n) \text { bits }
$$

and can answer rank-queries on the $B W T$ in $O(\lg \sigma)$. Given a pattern of length m, the r-index can answer pattern matching queries in time

$$
O(m \lg \sigma)
$$

- what about reporting queries?

Locating Occurrences (Sketch)

- modify backwards-search that it maintains $S A[e]$
- after backwards-search output $S A[e], S A[e-1], \ldots, S A[s]$
- in $O(r \lg n)$ bits and $O($ occ $\cdot \lg \lg r)$ time

Maintaining $S A[e]$

- sample SA positions at ends of runs
- if next character is $B W T$ [e], then next $S A\left[e^{\prime}\right]$ is $S A[e]-1$
- otherwise locate end of run and extract sample ㅇ.

Output Result

- following LF not possible (3) unbounded
- deduce $S A[i-1]$ from $S A[i]$
- character in L and F in same order
- only beginning of runs complicated
- for every character build predecessor data structure over sampled SA-values at end of runs
- associate with $\langle i, S A[i]\rangle$

Locating Occurrences (Sketch)

- modify backwards-search that it maintains $S A[e]$
- after backwards-search output $S A[e], S A[e-1], \ldots, S A[s]$
- in $O(r \lg n)$ bits and $O($ occ $\cdot \lg \lg r)$ time

Maintaining $S A[e]$

- sample SA positions at ends of runs
- if next character is $B W T[e]$, then next $S A\left[e^{\prime}\right]$ is $S A[e]-1$
- otherwise locate end of run and extract sample ㅇ.

Output Result

- following $L F$ not possible (3) unbounded
- deduce $S A[i-1]$ from $S A[i]$
- character in L and F in same order
- only beginning of runs complicated
- for every character build predecessor data structure over sampled SA-values at end of runs
- associate with $\langle i, S A[i]\rangle$

PINGO why can't we sample the SA as we did in the FM-index?

From the Suffix Tree to the r-Index-Questions?

Bibliography I

[FM00] Paolo Ferragina and Giovanni Manzini. "Opportunistic Data Structures with Applications". In: FOCS. IEEE Computer Society, 2000, pages 390-398. DOI: 10.1109/SFCS.2000.892127.
[GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: J. ACM 67.1 (2020), 2:1-2:54. DOI: 10.1145/3375890.
[KK20] Dominik Kempa and Tomasz Kociumaka. "Resolution of the Burrows-Wheeler Transform Conjecture". In: FOCS. IEEE, 2020, pages 1002-1013. DOI: 10.1109/FOCS46700.2020.00097.

