Text Indexing

Lecture 12: Longest Common Extensions

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (©)(1): www.creativecommons.org/licenses/by-sa/4.0 |commit 47a39dc compiled at 2023-01-30-13:05

Recap: Document Listing and Top-k Retrieval

Definition: Document Listing

Given a collection of D documents
$\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{D}\right\}$ containing symbols from an alphabet $\Sigma=[1, \sigma]$ and a pattern $P \in \Sigma^{*}$, return all $j \in[1, D]$, such that d_{j} contains P.

- $d_{1}=$ ATA
- $d_{2}=$ TAAA
- $d_{3}=$ TATA

And for queries:

- $P=$ TA is contained in d_{1}, d_{2}, and d_{3}
- $P=$ ATA is contained in d_{1} and d_{3}

Recap: Inverted Index and List Encodings

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_{t} that contain t and
- an ordered list $L(t)$ of documents containing t

List Encodings

- Δ-encoding
unary- and ternary-encoding
- Elia- γ and - δ-encoding
- Golomb- and Fibonacci-encoding

1 The old night keeper keeps the keep in the town
2 In the big old house in the big old gown
3 The house in the town had the big old keep
4 Where the old night keeper never did sleep
5 The night keeper keeps the keep in the night
6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\cdots	\cdots	\cdots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$

Recap: Pattern Matching with the LCP-Array (1/3)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries © detailed introduction in Advanced Data Structures

Definition: Range Minimum Queries

Given an array $A[1 . . m)$, a range minimum query for a range $\ell \leq r \in[1, n)$ returns

$$
R M Q_{A}(\ell, r)=\arg \min \{A[k]: k \in[\ell, r]\}
$$

- $\operatorname{lcp}(i, j)=\max \{k: T[i . . i+k)$
- $\operatorname{Icp}(i, j)=T[j . . j+k)\}=\operatorname{LCP}\left[R M Q_{L C P}(i+1, j)\right]$
- RMQs can be answered in $O(1)$ time and
- require $O(n)$ space

Recap: Pattern Matching with the LCP-Array (2/3)

- during binary search matched
- λ characters with left border ℓ and
- ρ characters with right border r
- w.l.o.g. let $\lambda \geq \rho$
- middle position i
- decide if continue in $[\ell, i]$ or $[i, r]$
- let $\xi=\operatorname{Icp}(S A[\ell], S A[i])$ (3) $O(1)$ time with RMQs

Recap: Pattern Matching with the LCP-Array (3/3)

- let $\xi=\operatorname{Icp}(S A[\ell], S A[i])$

$\xi>\lambda$

- $P[\lambda+1]>T[S A[\ell]+\lambda]=T[S A[i]+\lambda]$
- $\ell=i$ without character comparison

$\xi=\lambda$

- compare as before

$\xi<\lambda$

- $\xi \geq \rho$ and $P[\xi+1]<T[S A[i]+\xi]$
- $r=i$ and $\rho=\xi$ without character comparison

Old Problem, New Name

Definition: Longest Common Extensions

- also denoted as $\operatorname{lcp}(i, j)$ (3) in this lecture

Applications

- (sparse) suffix sorting
- approximate pattern matching

Given a text T of size n over an alphabet of size σ, construct data structure that answers for $i, j \in[1, n]$

$$
\operatorname{lce}_{T}(i, j)=\max \{\ell \geq 0: T[i, i+\ell)=T[j, j+\ell)\}
$$

$$
\operatorname{lce}_{T}(1,14)=012345
$$

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)

- based on ISA, LCP, and RMQ

- $O(1)$ query time, $\approx 9 n$ bytes additional space

Ultra Naive Scan (UNS)

- compare character by character

- $O(n)$ query time, no additional space

Monte Carlo and Las Vegas Algorithms

- setting: randomized algorithms

Monte Carlo Algorithm

- returns wrong result with small probability
- deterministic running time

Las Vegas Algorithm

- returns correct result
- only expected running time
- some Monte Carlo algorithms can be turned into Las Vegas algorithms
- depends on correctness check
- all Monte Carlo algorithms presented today can be turned into Las Vegas algorithms

Randomized String Matching

－compute 氛is of strings
－application not limited to LCEs

Definition：Karp－Rabin Fingerprint［KR87］

Given a text T of length n over an alphabet of size σ and a random prime number $q \in \Theta\left(n^{c}\right)$ ，the Karp－Rabin fingerprint of $T[i . . j]$ is

$$
\text { 像 }(i, j)=\left(\sum_{k=i}^{j} T[k] \cdot \sigma^{j-k}\right) \bmod q
$$

（1）$(x+y) \bmod z=z \bmod z+y \bmod z(\bmod z)$
－if $T[i . . i+\ell]=T[j . . j+\ell]$ ，then

$$
\text { 冢 }(i, i+\ell)=\text { 芻 }(j, j+\ell)
$$

－if $T[i . . i+\ell] \neq T[j . . j+\ell]$ ，then

$$
\operatorname{Prob}(\text { 冢 }(i, i+\ell)=\text { 冢 }(j, j+\ell)) \in O\left(\frac{\ell \lg \sigma}{n^{c}}\right)
$$

－prime has to be chosen uniformly at random
－how to turn it into Las Vegas algorithm？
－example on the board

Overwriting the Text with Fingerprints (1/2) [Pre18]

- given a text T over an alphabet of size σ
- let w be size of a computer word (3) e.g., 64 bit
- choose $\tau \in \Theta(w / \lg \sigma)$ (3) 8 for byte alphabet
- choose random prime $q \in\left[\frac{1}{2} \sigma^{\tau}, \sigma^{\tau}\right)$
- group the text into size- τ blocks: $\mathrm{B}[1 . . n / \tau]$ with

$$
B[i]=T[(i-1) \tau+1 . . i \tau]
$$

- compute $P^{\prime}[i]=$ 氛 $(i, \tau i)$ for $i \in[1, n / \tau]$
- $P^{\prime}[i]$ can fits in $B[i]$

- overwrite text with fingerprints (in-place)

- all parts of text are restorable
- how?

Overwriting the Text with Fingerprints（2／2）

－choose random prime $q \in\left[\frac{1}{2} \sigma^{\tau}, \sigma^{\tau}\right)$
－$B[i]=T[(i-1) \tau+1 . . i \tau]$
－$\lfloor B[i] / q\rfloor \in\{0,1\}$
－$D[i]=\lfloor B[i] / q\rfloor$（3）bit vector of size n / τ
－$P^{\prime}[i]=$ 冢 $(i, \tau i)$ and together with D ：
$B[i]=\left(P^{\prime}[i]-\sigma^{\tau} \cdot P^{\prime}[i-1] \bmod q\right)+D[i] \cdot q$
－this gives us access to the text（！）
－q can be chosen such that MSB of $P^{\prime}[i]$ is zero w．h．p．，then

－overwrite text with fingerprints（in－place）
冢 block 冢 block 冢 block
enough to answer LCE queries
－how？

Answering LCE Queries with Fingerprints

LCEs with Fingerprints

- compute LCE of i and j
- exponential search until逃 $\left(i, i+2^{k}\right) \neq$ 曷 $\left(j, j+2^{k}\right)$
- binary search to find correct block m
- recompute $B[m$] and find mismatching character
- requires $O(\lg \ell)$ time for LCEs of size ℓ

- overwrite text with fingerprints (in-place)

String Synchronizing Sets（Simplified，1／2）

Definition：Simplified τ－Synchronizing Sets［KK19］

Given a text T of length n and $0<\tau \leq n / 2$ ，a simplified τ－synchronizing set S of T is

$$
S=\{i \in[1, n-2 \tau+1]: \min \{\text { 芻 }(j, j+\tau-1): j \in[i, i+\tau]\} \in\{\text { 冢 }(i, i+\tau-1), \text { 冢 }(i+\tau, i+2 \tau-1)\}\}
$$

String Synchronizing Sets (Simplified, 2/2)

- $|S|=\Theta(n / \tau)$ in practice (on most data sets)
- more complex definition required to obtain this size

Consistency \& (Simplified) Density Property

- for all $i, j \in[1, n-2 \tau+1]$ we have $T[i, i+2 \tau-1]=T[j, j+2 \tau-1] \Rightarrow i \in S \Leftrightarrow j \in S$
- for any τ consecutive positions there is at least one position in S

Answering LCE Queries with String Synchronizing Sets (1/2)

Text T^{\prime} for Positions in S

Answering LCE Queries with String Synchronizing Sets (2/2)

- in practice, we sort the substrings
- characters of T^{\prime} are the ranks of substrings
- build BB LCE for T^{\prime} w.r.t. length in T

Answering Queries

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T^{\prime}

- in this example: $\operatorname{lce}_{T}(i, j)=s_{1}-i+\operatorname{lce}_{T^{\prime}}(1,|S|-2)$
- in practice: we have a very fast static successor data structure

Practical Evaluation [Din+20]

english.1024MB

??
dna
english.1024MB
cere

Conclusion and Outlook

This Lecture

- longest common extension queries
- Karp-Rabin fingerprints
- string synchronizing sets

Next Lecture

- big recap and Q\&A

