

Text Indexing

Lecture 01: Tries

Florian Kurpicz

PINGO

https://pingo.scc.kit.edu/952701

Definition: Text

- let Σ be an alphabet
- $T \in \Sigma^*$ is a text
- |T| = n is the length of the string
- T = T[1]T[2]...T[n]

Definition: Text

- let Σ be an alphabet
- $T \in \Sigma^*$ is a text
- |T| = n is the length of the string
- T = T[1]T[2]...T[n]

Definition: Alphabet Types

- constant size alphabet: finite set not depending on n
- integer alphabet: alphabet is $\{1, \dots, \sigma\}$ and fits into constant number of words
- finite alphabets: alphabet of finite size

Definition: Substring, Prefix, and Suffix

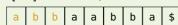
Given a text $T = T[1]T[2] \dots T[n]$ of length n:

• T[i..j] = T[i] ... T[j] is called a substring,

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

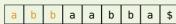
- T[i..j] = T[i] ... T[j] is called a substring, a b b a b b a \$
- T[1..i] is called a prefix, and



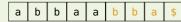
Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i]...T[j] is called a substring,
- T[1..i] is called a prefix, and



 \blacksquare T[i..n] is called a suffix of T.



Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring,
- T[1..i] is called a prefix, and
 a b b a a b b a \$
- T[i..n] is called a suffix of T.

 a b b a a b b a \$

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- we assume that T[n] = \$ with
- \$ $\notin \Sigma$ and \$ < α for all $\alpha \in \Sigma$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i]...T[j] is called a substring,
- T[1..i] is called a prefix, and
- T[i..n] is called a **suffix** of T.

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- $lap{1}{2}$ we assume that T[n] = \$ with
- $lef{4} \$
 otin \Sigma$ and \$ < lpha for all $lpha \in \Sigma$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring,
- a | b | b | a | a | b | b | a | \$
- T[1..i] is called a prefix, and
- \bullet T[i..n] is called a suffix of T.

	а	b	b	а	а	b	b	а	\$	1
--	---	---	---	---	---	---	---	---	----	---

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- \blacksquare we assume that T[n] = \$ with
 - $m{4} \ \$
 otin \Sigma$ and \$ < lpha for all $lpha \in \Sigma$
- otherwise, suffix can be prefix of another suffix

T[1..n] = abbaabba and <math>T[5..n] = abba

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i]...T[j] is called a substring,
- T[1..i] is called a prefix, and
- T[i..n] is called a suffix of T.

а	b	b	а	а	b	b	а	\$

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- $lap{1}{2}$ we assume that T[n] = \$ with
- $\$ \notin \Sigma$ and $\$ < \alpha$ for all $\alpha \in \Sigma$
- otherwise, suffix can be prefix of another suffix

T[1..n] = abbaabba and T[5..n] = abba

Definition: Prefix-Free

A string is prefix-free if no suffix is a prefix of another suffix

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \dots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

String Dictionary

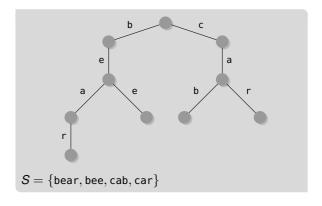
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of
 - $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \dots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique



start at root and follow existing children

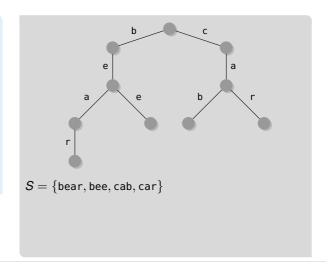
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



start at root and follow existing children

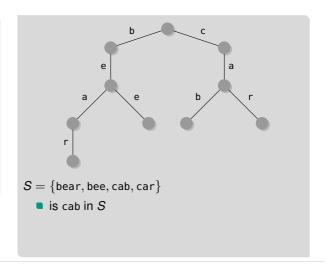
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



start at root and follow existing children

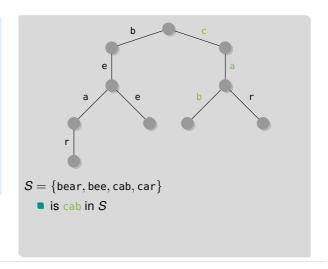
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



start at root and follow existing children

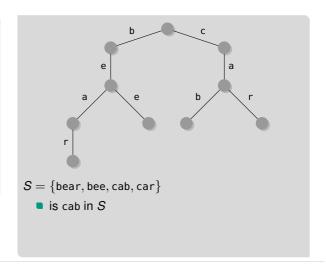
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



Same for all

start at root and follow existing children

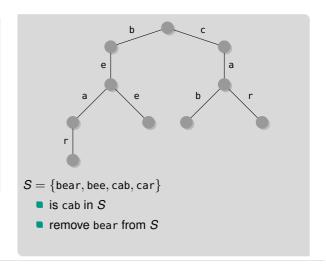
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



Same for all

start at root and follow existing children

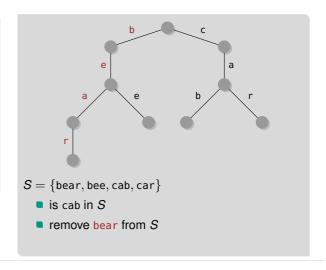
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



Same for all

start at root and follow existing children

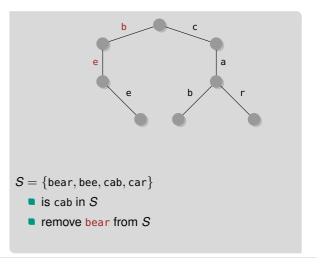
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



Same for all

start at root and follow existing children

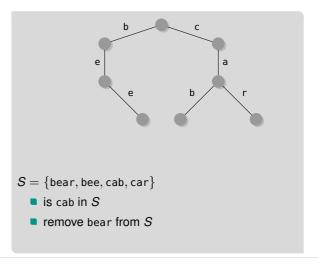
Contains

is leaf found and whole pattern is matched

Delete

if leaf is found backtrack and delete unique path
 otherwise not found

Insert



Same for all

start at root and follow existing children

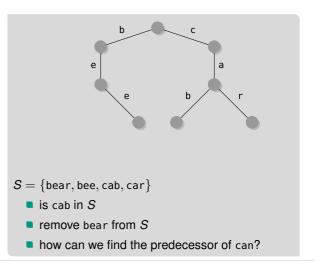
Contains

is leaf found and whole pattern is matched

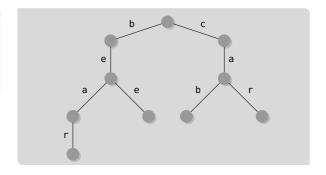
Delete

if leaf is found backtrack and delete unique path
 otherwise not found

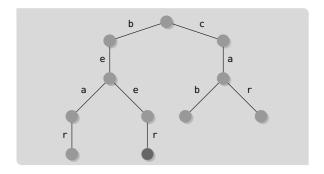
Insert



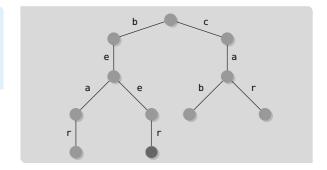
insert beer



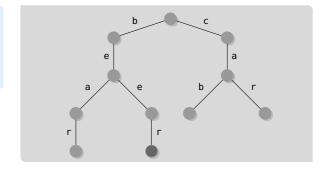
insert beer



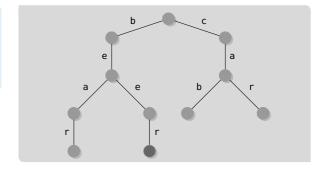
- insert beer
- bee cannot be found



- insert beer
- bee cannot be found
- remember which node refers to a string



- insert beer
- bee cannot be found
- remember which node refers to a string
- or (much preferred) make strings prefix free



Setting

- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

Setting

- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

- query times
- space requirements

Setting

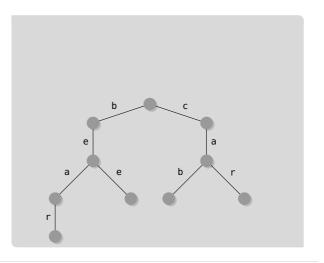
- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

- query times
- space requirements
- both depend on the representation of children
- look at different representations

Setting

- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

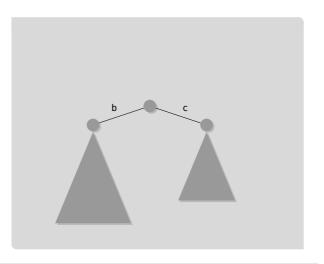
- query times
- space requirements
- both depend on the representation of children
- look at different representations



Setting

- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

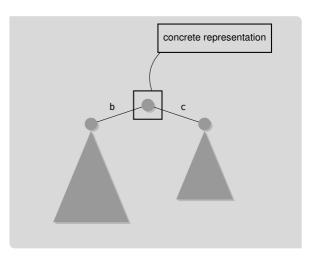
- query times
- space requirements
- both depend on the representation of children
- look at different representations



Setting

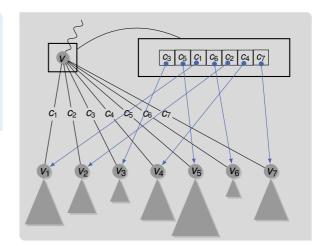
- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

- query times
- space requirements
- both depend on the representation of children
- look at different representations



Arrays of Variable Size

- store children (character and pointer) in the order they are added
- to find child scan array
- to delete child swap with last and remove last
 children are not ordered
- **PINGO** query time?

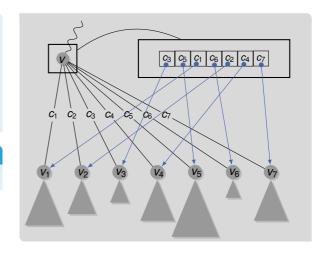


Arrays of Variable Size

- store children (character and pointer) in the order they are added
- to find child scan array
- to delete child swap with last and remove last
 children are not ordered
- **PINGO** query time?

Query Time (Contains)

 $O(m \cdot \sigma)$



Arrays of Variable Size

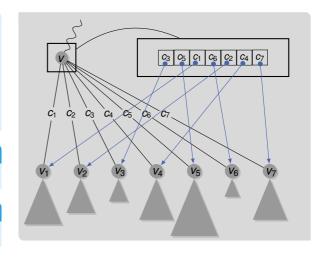
- store children (character and pointer) in the order they are added
- to find child scan array
- to delete child swap with last and remove last
 children are not ordered
- **PINGO** query time?

Query Time (Contains)

 $O(m \cdot \sigma)$

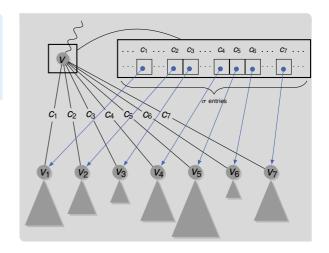
Space

■ O(N) words



Arrays of Fixed Size

- children (pointer) are stored in arrays of size σ
- use null to mark non-existing children
- finding and deleting children is trivial
- **PINGO** query time?

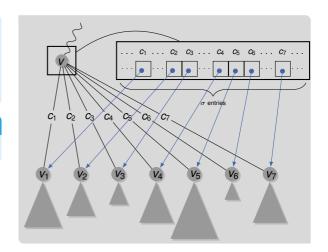


Arrays of Fixed Size

- \blacksquare children (pointer) are stored in arrays of size σ
- use null to mark non-existing children
- finding and deleting children is trivial
- **PINGO** query time?

Query Time (Contains)

■ *O*(*m*) **•** optimal



Arrays of Fixed Size

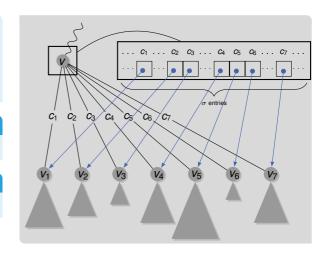
- \blacksquare children (pointer) are stored in arrays of size σ
- use null to mark non-existing children
- finding and deleting children is trivial
- **PINGO** query time?

Query Time (Contains)

■ O(m) • optimal

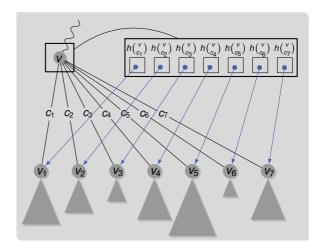
Space

 \bullet $O(N \cdot \sigma)$ words \bullet very bad



Hash Tables

- either use a hash table per node
 - has overhead
- or use global hash table for whole trie
- PINGO query time?

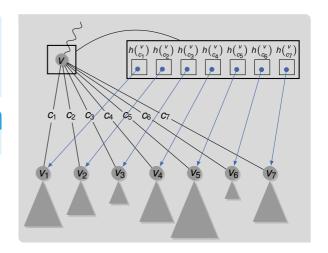


Hash Tables

- either use a hash table per node
 - has overhead
- or use global hash table for whole trie
- **PINGO** query time?

Query Time (Contains)

■ *O*(*m*) w.h.p.



Hash Tables

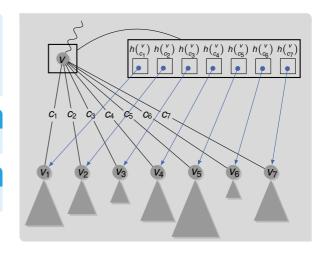
- either use a hash table per node
 - has overhead
- or use global hash table for whole trie
- **PINGO** query time?

Query Time (Contains)

■ *O*(*m*) w.h.p.

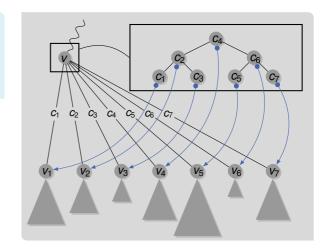
Space

O(N) words



Balanced Search Trees

- children are stored in balanced search trees
- e.g., AVL tree, red-black tree, ...
- in static setting sorted array and binary search
- **PINGO** query time?

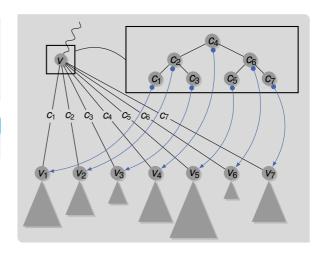


Balanced Search Trees

- children are stored in balanced search trees.
- e.g., AVL tree, red-black tree, ...
- in static setting sorted array and binary search
- **PINGO** query time?

Query Time (Contains)

 $O(m \cdot \lg \sigma)$



Balanced Search Trees

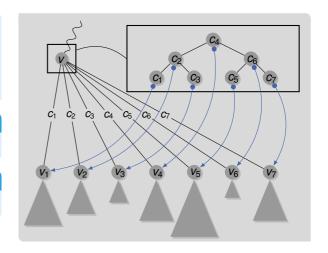
- children are stored in balanced search trees.
- e.g., AVL tree, red-black tree, ...
- in static setting sorted array and binary search
- **PINGO** query time?

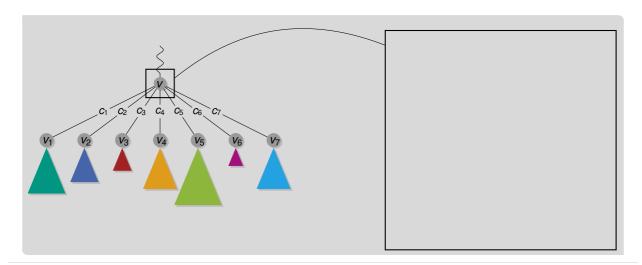
Query Time (Contains)

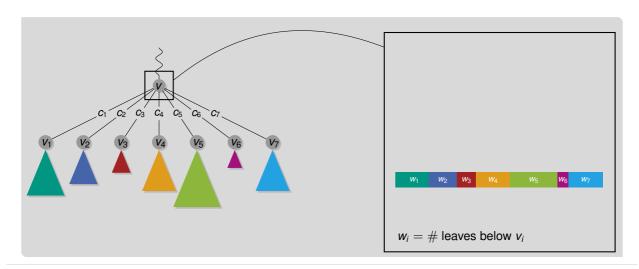
 $O(m \cdot \lg \sigma)$

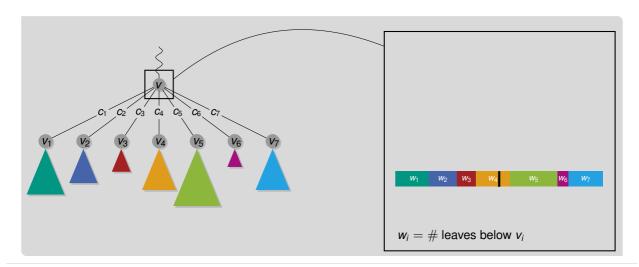
Space

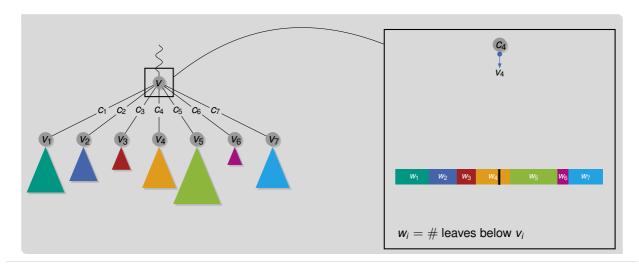
O(N) words

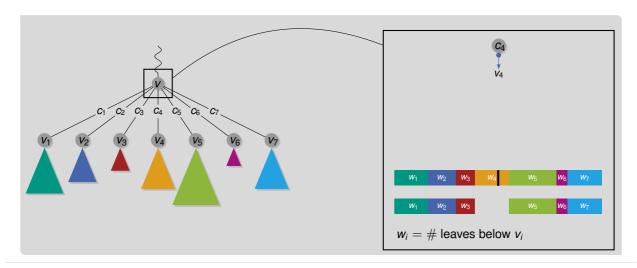


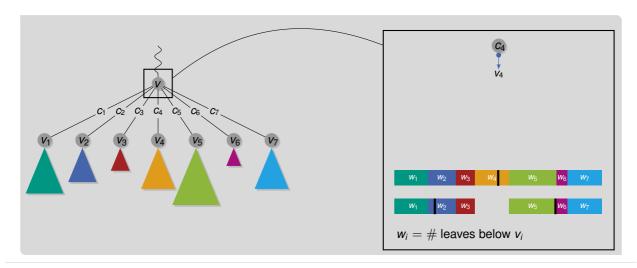


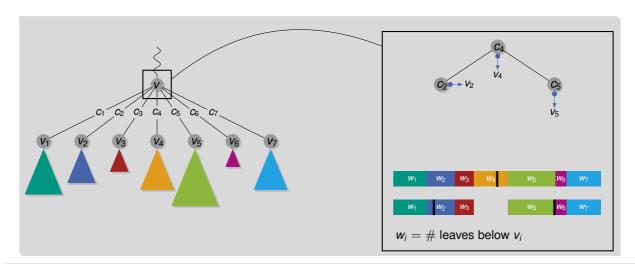


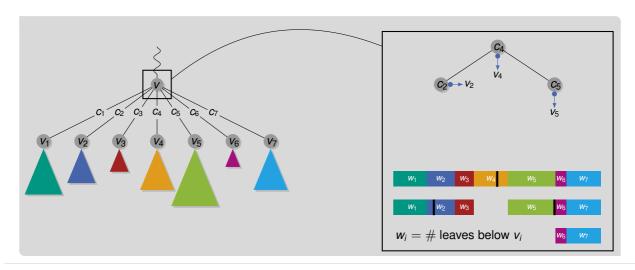


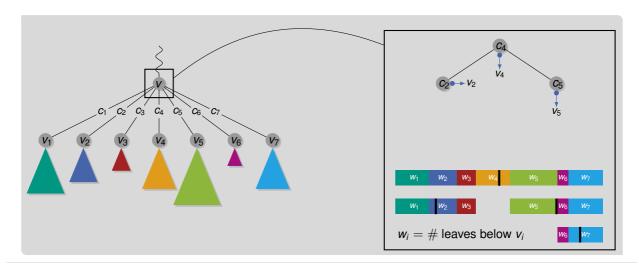


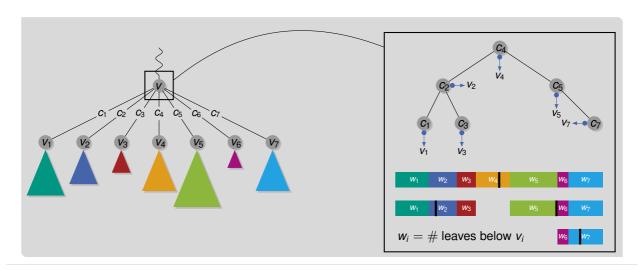


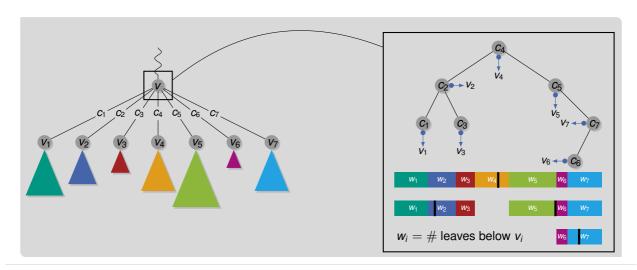






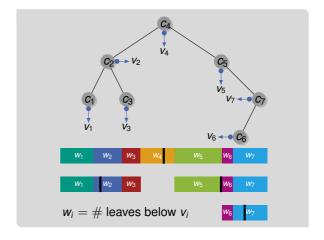






Weight-Balanced Search Trees (2/2)

- use weight-balanced search trees at each node
- PINGO query time?

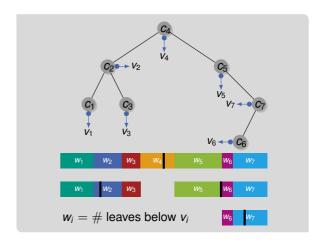


Weight-Balanced Search Trees (2/2)

- use weight-balanced search trees at each node
- **PINGO** query time?

Query Time (Contains)

- $O(m + \lg k)$
- match character of pattern
- or halve number of strings



Weight-Balanced Search Trees (2/2)

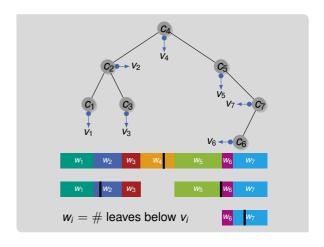
- use weight-balanced search trees at each node
- PINGO query time?

Query Time (Contains)

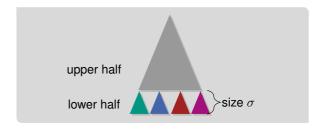
- $O(m + \lg k)$
- match character of pattern
- or halve number of strings

Space

■ O(N) words

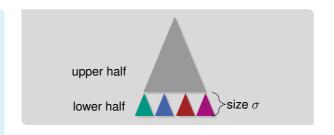


- split tree into upper and lower half
- lower half deepest nodes such that subtrees have size $O(\sigma)$
- weight-balanced search trees for lower half
- fixed-size arrays in upper half branching nodes only
- PINGO query time?



Two-Levels with Weight-Balanced Search Trees

- split tree into upper and lower half
- lower half deepest nodes such that subtrees have size $O(\sigma)$
- weight-balanced search trees for lower half
- fixed-size arrays in upper half branching nodes only
- PINGO query time?



Query Time (Contains)

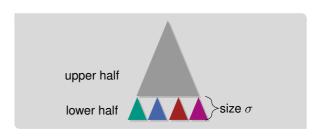
- upper half: O(m)
- lower half: $O(m + \lg \sigma)$
- total: $O(m + \lg \sigma)$

Two-Levels with Weight-Balanced Search Trees

- split tree into upper and lower half
- lower half deepest nodes such that subtrees have size $O(\sigma)$
- weight-balanced search trees for lower half
- fixed-size arrays in upper half branching nodes only
- PINGO query time?

Query Time (Contains)

- upper half: O(m)
- lower half: $O(m + \lg \sigma)$
- total: $O(m + \lg \sigma)$



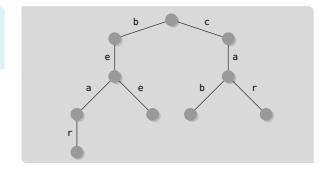
Space

- upper half: O(N) words \bullet $O(N/\sigma)$ branching nodes
- lower half: O(N) words
- total: O(N) words

Representation	Query Time (Contains)	Space in Words
arrays of variable size	$O(m \cdot \sigma)$	O(N)
arrays of fixed size	<i>O</i> (<i>m</i>)	$\mathcal{O}(N\cdot\sigma)$
hash tables	<i>O</i> (<i>m</i>) w.h.p.	O(N)
balanced search trees	$O(m \cdot \lg \sigma)$	O(N)
weight-balanced search trees	$O(m + \lg k)$	O(N)
two-levels with weight-balanced search trees	$O(m + \lg \sigma)$	O(N)

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

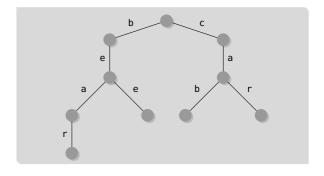


Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.



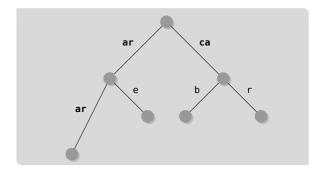
17/18

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.



This Lecture

- dictionaries
- tries with different space-time trade-off

This Lecture

- dictionaries
- tries with different space-time trade-off

Next Lecture

inverted indices