
Bachelor’s Thesis
Parallel Vectorized Wavelet Tree Construction

Overview

The FM-index combines two data structures: the Burrows-
Wheeler transform and wavelet trees. It is a very prominent
full-text index and used in most DNA read aligners [6] and
in Bioinformatics in general. In this Master’s thesis, we focus
on the efficient construction of the second data structure—
wavelet trees. The wavelet tree is a binary tree data structure
that can be used to answer rank and select queries on texts
of size n over an alphabet of size σ in O(lg σ) time. Here,
rankα(i) queries ask for the number of occurrences of the
symbol α before the position i and selectα(i) queries return
the text position of the i-th occurrence of the symbol α.

Let T be a text of length n over an alphabet of size σ. The
corresponding wavelet tree consists of ⌈lg σ⌉ bit vectors of
size n, see Fig. 1. Even though all n⌈lg σ⌉ entries in the bit
vectors have to be looked at during construction, the wavelet
tree can be computed in O(n lg σ/

√
lg n) time using broad-

word programming [1, 7]. There exists an implementation of
such an algorithm by Dinklage et al. [3], which heavily relies
on specialized CPU instructions like parallel bit extract and
packed shuffle bytes. The reported construction times are
faster than the previously fastest sequential WT construction
algorithm [2, 4]. However, the algorithm has one signifi-
cant disadvantage—it does not scale well using multiple CPU
cores.

Objective

The main objective of this Master’s thesis is to develop a fast
and scaling wavelet tree construction algorithm that com-
putes the wavelet tree in O(n lg σ/

√
lnn) work using spe-

cialized CPU instructions. To this end, space-efficient and
bit vectors should be used [5]. Making this algorithm space-
efficient is another (minor) goal of this Bachelor’s thesis.

Requirements

• Excellent C++ programming skills

• Interest in string algorithms and compact data structures

Contact

Dr. Florian Kurpicz (kurpicz@kit.edu)

Σϵ = [0, 8)

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

Σ0 = [0, 4)

0 1 3 1 2 3

0 0 1 0 1 1

Σ1 = [4, 8)

7 5 4 6

1 0 0 1

Σ00 = [0, 2)

0 1 1

0 1 1

Σ01 = [2, 4)

3 2 3

1 0 1

Σ10 = [4, 6)

5 4

1 0

Σ11 = [6, 8)

7 6

1 0

Figure 1: The wavelet tree of T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3].
The light teal () arrays contain the characters represented
at the corresponding position in the bit vector and are not a
part of the wavelet tree. Σα denotes the characters that are
represented by the bit vector for α ∈ {ϵ, 0, 1, 00, 01, 10, 11}.
All this auxiliary information is not stored explicitly.

References

[1] Maxim A. BabenkoMunroNV2016WT, Pawel
Gawrychowski, Tomasz Kociumaka, and Tatiana
Starikovskaya. Wavelet trees meet suffix trees. In SODA,
pages 572–591. SIAM, 2015.

[2] Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian
Kurpicz, and Marvin Löbel. Practical wavelet tree con-
struction. ACM J. Exp. Algorithmics, 26:1.8:1–1.8:67,
2021.

[3] Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and
Jan-Philipp Tarnowski. Bit-parallel (compressed) wavelet
tree construction. In DCC, pages 81–90. IEEE, 2023.

[4] Johannes Fischer, Florian Kurpicz, and Marvin Löbel.
Simple, fast and lightweight parallel wavelet tree construc-
tion. In ALENEX, pages 9–20. SIAM, 2018.

[5] Florian Kurpicz. Engineering compact data structures for
rank and select queries on bit vectors. In SPIRE, volume
13617 of Lecture Notes in Computer Science, pages 257–
272. Springer, 2022.

[6] Ben Langmead and Steven L. Salzberg. Fast gapped-
read alignment with bowtie 2. Nature methods, 9(4):357,
2012.

[7] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter.
Fast construction of wavelet trees. Theor. Comput. Sci.,
638:91–97, 2016.

mailto:kurpicz@kit.edu

