Bachelor’s Thesis
Parallel Vectorized Wavelet Tree Construction

Overview

The FM-index combines two data structures: the Burrows-
Wheeler transform and wavelet trees. It is a very prominent
full-text index and used in most DNA read aligners [6] and
in Bioinformatics in general. In this Master's thesis, we focus
on the efficient construction of the second data structure—
wavelet trees. The wavelet tree is a binary tree data structure
that can be used to answer rank and select queries on texts
of size n over an alphabet of size o in O(lgo) time. Here,
rankq (i) queries ask for the number of occurrences of the
symbol « before the position i and select, (i) queries return
the text position of the i-th occurrence of the symbol «.

Let T be a text of length n over an alphabet of size 0. The
corresponding wavelet tree consists of [lgo]| bit vectors of
size n, see Fig.[1] Even though all n[lg o] entries in the bit
vectors have to be looked at during construction, the wavelet
tree can be computed in O(nlgo//Ign) time using broad-
word programming [I| [7]. There exists an implementation of
such an algorithm by Dinklage et al. [3], which heavily relies
on specialized CPU instructions like parallel bit extract and
packed shuffle bytes. The reported construction times are
faster than the previously fastest sequential WT construction
algorithm [2] [4]. However, the algorithm has one signifi-
cant disadvantage—it does not scale well using multiple CPU
cores.

Objective

The main objective of this Master's thesis is to develop a fast
and scaling wavelet tree construction algorithm that com-
putes the wavelet tree in O(nlgo/vInn) work using spe-
cialized CPU instructions. To this end, space-efficient and
bit vectors should be used [5]. Making this algorithm space-
efficient is another (minor) goal of this Bachelor's thesis.

Requirements

o Excellent C++ programming skills

e |Interest in string algorithms and compact data structures

Contact

Dr. Florian Kurpicz (kurpicz@kit.edul)

Y= [07 8)
0 1 3 7 1 5 4 2 6 3
ofofol1]of[1[1]o]1]O
S0 = [0,4) / \ ¥ = [4,8)
0 1 3 1 2 3 7 5 4 6
ojofl1lo|1]1 1 01
0 1 1 3 2 3 5 4 7 6
011 1]0]1 1]0 1]0
200 == [0, 2) 201 - [2/4) 210 - [47 6) 211 - [6,8)

Figure 1: The wavelet tree of T'=[0,1,3,7,1,5,4,2,6,3|.
The light teal (©) arrays contain the characters represented
at the corresponding position in the bit vector and are not a
part of the wavelet tree. 3, denotes the characters that are
represented by the bit vector for a € {¢,0,1,00,01,10,11}.
All this auxiliary information is not stored explicitly.

References
[1] Maxim A. BabenkoMunroNV2016WT, Pawel
Gawrychowski, Tomasz Kociumaka, and Tatiana

Starikovskaya. Wavelet trees meet suffix trees. In SODA,
pages 572-591. SIAM, 2015.

[2] Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian
Kurpicz, and Marvin Lobel. Practical wavelet tree con-
struction. ACM J. Exp. Algorithmics, 26:1.8:1-1.8:67,

2021.
[3]

Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and
Jan-Philipp Tarnowski. Bit-parallel (compressed) wavelet

tree construction. In DCC, pages 81-90. IEEE, 2023.
[4]

Johannes Fischer, Florian Kurpicz, and Marvin Lobel.
Simple, fast and lightweight parallel wavelet tree construc-

tion. In ALENEX, pages 9-20. SIAM, 2018.
[5]

Florian Kurpicz. Engineering compact data structures for
rank and select queries on bit vectors. In SPIRE, volume
13617 of Lecture Notes in Computer Science, pages 257—

272. Springer, 2022.
[6]

Ben Langmead and Steven L. Salzberg. Fast gapped-
read alignment with bowtie 2. Nature methods, 9(4):357,

2012.

J. lan Munro, Yakov Nekrich, and Jeffrey Scott Vitter.
Fast construction of wavelet trees. Theor. Comput. Sci.,
638:91-97, 2016.

[7]


mailto:kurpicz@kit.edu

