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Overview

The FM-index combines two data structures: the Burrows-
Wheeler transform and wavelet trees. It is a very prominent
full-text index and used in most DNA read aligners [6] and
in Bioinformatics in general. In this Master's thesis, we focus
on the efficient construction of the second data structure—
wavelet trees. The wavelet tree is a binary tree data structure
that can be used to answer rank and select queries on texts
of size n over an alphabet of size o in O(lgo) time. Here,
rankq (i) queries ask for the number of occurrences of the
symbol « before the position i and select, (i) queries return
the text position of the i-th occurrence of the symbol «.

Let T be a text of length n over an alphabet of size 0. The
corresponding wavelet tree consists of [lgo]| bit vectors of
size n, see Fig.[1] Even though all n[lg o] entries in the bit
vectors have to be looked at during construction, the wavelet
tree can be computed in O(nlgo//Ign) time using broad-
word programming [I| [7]. There exists an implementation of
such an algorithm by Dinklage et al. [3], which heavily relies
on specialized CPU instructions like parallel bit extract and
packed shuffle bytes. The reported construction times are
faster than the previously fastest sequential WT construction
algorithm [2] [4]. However, the algorithm has one signifi-
cant disadvantage—it does not scale well using multiple CPU
cores.

Objective

The main objective of this Master's thesis is to develop a fast
and scaling wavelet tree construction algorithm that com-
putes the wavelet tree in O(nlgo/vInn) work using spe-
cialized CPU instructions. To this end, space-efficient and
bit vectors should be used [5]. Making this algorithm space-
efficient is another (minor) goal of this Bachelor's thesis.

Requirements

o Excellent C++ programming skills

e |Interest in string algorithms and compact data structures

Contact

Dr. Florian Kurpicz (kurpicz@kit.edul)
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Figure 1: The wavelet tree of T'=[0,1,3,7,1,5,4,2,6,3|.
The light teal (©) arrays contain the characters represented
at the corresponding position in the bit vector and are not a
part of the wavelet tree. 3, denotes the characters that are
represented by the bit vector for a € {¢,0,1,00,01,10,11}.
All this auxiliary information is not stored explicitly.
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