Masters’s Thesis
Scalable Distributed String Sorting

Overview

Sorting is one of the most fundamental problems in algorithms.
Here, we want to find a globally ordered permutation of the
input with respect to a given comparison function (usually
“less than”). However, most of the literature considers the
input to be atomic, i.e., elements can be compared in constant
time. When sorting strings, it is not possible to compare
two arbitrary strings in constant time. Instead, at least the
distinguishing prefix of both strings has to be considered,
which describes the minimum number of characters that have
to be compared to distinguish both strings.

This greatly differentiates string sorting from sorting atomic
elements. There exists work on string sorting in shared [2]
1] and distributed memory [4, [5]. However, there are no
distributed memory algorithms that scale beyond thousands
of cores.

Furthermore, string sorting is closely related to suffix sort-
ing. Here, we want to sort all suffixes of the input lexico-
graphically. While there exist linear time distributed memory
suffix array construction algorithm [?], they have not been
implemented in a scaling fashion and the only practical im-
plementations are quasilinear algorithms [3, 5] [6].

Objective

The main objective of this Master's thesis is to develop a
scaling string sorting algorithms. To this end, features like
longest common prefix compression and other tools used in
previous work [?] should be used. Another goal is to develop
a space-efficient distributed memory string sorting algorithm
that does not rely on all string that should be sorted are
available all the time, i.e., they only exist in a compressed
form and have to be decompressed to be compared.

The space-efficient distributed memory string sorting al-
gorithm can be used to implement a linear time distributed
memory suffix array construction algorithm. This is an op-
tional goal of this thesis.

Requirements
e Excellent C++ and MPI programming skills

e Interest in string algorithms and compact data structures

Contact

Dr. Florian Kurpicz (kurpicz@kit.edul)

[alb]aln]d|o[n]$]
[alblale]c[o]ir[$]
[albld]ufc[t[i]o[n]$]
[alblelx]r[a[n]$]
[alblely]a[n]c[e[$]
[alb]h]o[r[r[e[n[t]$]
[elnfd]u[r[a[n]c[e]$]
[elnlelxle] i[=z[e[r]$]
[elnlelx]v]alt[e[$]
[eln]flele[b[1]e[m|e[n]t]$]
[elnlE ol r[c[er[$]

L;I\;._[\'/C[Q‘&QI\'JI\JC.«;}*‘

Figure 1: Longest common prefix (blue) and distinguishing
prefixes (green) of a set of strings.

References

[1] Jon Louis Bentley and Robert Sedgewick. Fast algorithms
for sorting and searching strings. In SODA, pages 360-
369. ACM/SIAM, 1997.

[2] Timo Bingmann. Scalable String and Suffix Sorting:
Algorithms, Techniques, and Tools. PhD thesis, Karlsruhe
Institute of Technology, Germany, 2018.

[3] Timo Bingmann, Simon Gog, and Florian Kurpicz. Scal-
able construction of text indexes with thrill. In [EEE
BigData, pages 634—643. IEEE, 2018.

[4] Timo Bingmann, Peter Sanders, and Matthias Schimek.
Communication-efficient string sorting. In IPDPS, pages
137-147. IEEE, 2020.

[5] Johannes Fischer and Florian Kurpicz. Lightweight dis-
tributed suffix array construction. In ALENEX, pages
27-38. SIAM, 2019.

[6] Patrick Flick and Srinivas Aluru. Parallel distributed
memory construction of suffix and longest common prefix
arrays. In SC, pages 16:1-16:10. ACM, 2015.

mailto:kurpicz@kit.edu

